甲状腺细针穿刺细胞学中多模态大语言模型的快速工程和诊断准确性。

IF 1.9
Bioinformation Pub Date : 2025-06-30 eCollection Date: 2025-01-01 DOI:10.6026/97320630021317
Bibhas Saha Dala, Kaushik Mukhopadhyay, Dwaipayan Roy, Souvik Bhattacharya, Indranil Chakrabarti, Santosh Kumar Mondal
{"title":"甲状腺细针穿刺细胞学中多模态大语言模型的快速工程和诊断准确性。","authors":"Bibhas Saha Dala, Kaushik Mukhopadhyay, Dwaipayan Roy, Souvik Bhattacharya, Indranil Chakrabarti, Santosh Kumar Mondal","doi":"10.6026/97320630021317","DOIUrl":null,"url":null,"abstract":"<p><p>Role of Large language models (LLMs) in fine-needle aspiration cytology (FNAC) image analysis remain uncertain. We evaluated two LLMs - Chat GPT-4o (OpenAI) and Claude 3.5 Sonnet (Anthropic) on 63 thyroid FNAC cases, each represented by eight microscopic images (Pap and MGG, 10x/40x), using generic and structured prompts. Structured prompts improved Bethesda concordance and near-match rates but inter-rater agreement remained poor (κ ≤ 0.09). Specificity reached 100% with structured prompts, but sensitivity dropped to ≤11.8% and misclassification persisted. LLMs show potential, but domain-specific training and validation are necessary for clinical use.</p>","PeriodicalId":8962,"journal":{"name":"Bioinformation","volume":"21 6","pages":"1317-1323"},"PeriodicalIF":1.9000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12449510/pdf/","citationCount":"0","resultStr":"{\"title\":\"Prompt engineering and diagnostic accuracy of multimodal large language models in thyroid fine-needle aspiration cytology.\",\"authors\":\"Bibhas Saha Dala, Kaushik Mukhopadhyay, Dwaipayan Roy, Souvik Bhattacharya, Indranil Chakrabarti, Santosh Kumar Mondal\",\"doi\":\"10.6026/97320630021317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Role of Large language models (LLMs) in fine-needle aspiration cytology (FNAC) image analysis remain uncertain. We evaluated two LLMs - Chat GPT-4o (OpenAI) and Claude 3.5 Sonnet (Anthropic) on 63 thyroid FNAC cases, each represented by eight microscopic images (Pap and MGG, 10x/40x), using generic and structured prompts. Structured prompts improved Bethesda concordance and near-match rates but inter-rater agreement remained poor (κ ≤ 0.09). Specificity reached 100% with structured prompts, but sensitivity dropped to ≤11.8% and misclassification persisted. LLMs show potential, but domain-specific training and validation are necessary for clinical use.</p>\",\"PeriodicalId\":8962,\"journal\":{\"name\":\"Bioinformation\",\"volume\":\"21 6\",\"pages\":\"1317-1323\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12449510/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6026/97320630021317\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6026/97320630021317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大语言模型(LLMs)在细针吸细胞学(FNAC)图像分析中的作用仍不确定。我们评估了两个LLMs - Chat gpt - 40 (OpenAI)和Claude 3.5 Sonnet (Anthropic)对63例甲状腺FNAC病例的治疗,每个病例由8个显微图像(Pap和MGG, 10倍/40倍)代表,使用通用和结构化提示。结构化提示提高了Bethesda一致性和接近匹配率,但评分者之间的一致性仍然很差(κ≤0.09)。结构化提示的特异性达到100%,但敏感性降至≤11.8%,错误分类仍然存在。法学硕士显示出潜力,但对于临床应用来说,特定领域的培训和验证是必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prompt engineering and diagnostic accuracy of multimodal large language models in thyroid fine-needle aspiration cytology.

Role of Large language models (LLMs) in fine-needle aspiration cytology (FNAC) image analysis remain uncertain. We evaluated two LLMs - Chat GPT-4o (OpenAI) and Claude 3.5 Sonnet (Anthropic) on 63 thyroid FNAC cases, each represented by eight microscopic images (Pap and MGG, 10x/40x), using generic and structured prompts. Structured prompts improved Bethesda concordance and near-match rates but inter-rater agreement remained poor (κ ≤ 0.09). Specificity reached 100% with structured prompts, but sensitivity dropped to ≤11.8% and misclassification persisted. LLMs show potential, but domain-specific training and validation are necessary for clinical use.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioinformation
Bioinformation MATHEMATICAL & COMPUTATIONAL BIOLOGY-
自引率
0.00%
发文量
128
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信