Marta Alonso-García, Paul B L George, Samantha Leclerc, Marc Veillette, Caroline Duchaine, Juan Carlos Villarreal A
{"title":"地衣中抗生素耐药基因的检测:来自星衣Cladonia的见解。","authors":"Marta Alonso-García, Paul B L George, Samantha Leclerc, Marc Veillette, Caroline Duchaine, Juan Carlos Villarreal A","doi":"10.1093/aob/mcaf231","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and aims: </strong>Antibiotics are natural compounds produced by microorganisms that have long existed in ecosystems. However, the widespread clinical and agricultural use of antibiotics has intensified selective pressures on bacteria, leading to the proliferation of antibiotic resistance genes (ARGs). The increasing prevalence of these genetic elements in clinical and environmental settings now poses a major global health threat. While ARGs are well documented in anthropogenically influenced environments, their distribution and origins in remote ecosystems, such as the boreal forests, remain poorly understood. Here, we investigate the occurrence, diversity, and potential origins of ARGs in the boreal lichen Cladonia stellaris.</p><p><strong>Methods: </strong>We conducted the first targeted assessment of ARGs in lichens by analyzing 42 C. stellaris samples from northern and southern lichen woodlands (LWs) in eastern Canada. Using high-throughput quantitative PCR, we screened for 33 ARGs and three mobile genetic elements (MGEs), quantifying their relative abundance. Bacterial community composition was characterized via 16S rRNA gene sequencing. Statistical analyses evaluated geographical patterns, co-occurrence between ARGs and bacterial taxa, and the influence of latitude on ARG distribution.</p><p><strong>Key results: </strong>Ten ARGs conferring resistance to four antibiotic classes (aminoglycosides, beta-lactams, quinolones and sulfonamides), along with one MGE, were detected. The ARGs blaCTX-M-1, qnrB, and qepA were highly prevalent, with qepA often surpassing 16S rRNA gene abundance. Only qnrB showed significantly higher abundance in southern samples. Latitude significantly influenced ARG profiles, whereas bacterial community composition did not.</p><p><strong>Conclusions: </strong>Our findings demonstrate that C. stellaris harbors diverse ARGs in remote boreal ecosystems with limited anthropogenic influence. Proposed explanations for ARG presence include long-distance dispersal via bioaerosols and endogenous development within lichen microbiomes, yet these remain speculative. Future work incorporating bacterial isolation, whole-genome sequencing, metatranscriptomics, air sampling, and metabolomic profiling is necessary to unravel the ecology and evolution of ARGs in natural habitats.</p>","PeriodicalId":8023,"journal":{"name":"Annals of botany","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antibiotic resistance genes detected in lichens: insights from Cladonia stellaris.\",\"authors\":\"Marta Alonso-García, Paul B L George, Samantha Leclerc, Marc Veillette, Caroline Duchaine, Juan Carlos Villarreal A\",\"doi\":\"10.1093/aob/mcaf231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and aims: </strong>Antibiotics are natural compounds produced by microorganisms that have long existed in ecosystems. However, the widespread clinical and agricultural use of antibiotics has intensified selective pressures on bacteria, leading to the proliferation of antibiotic resistance genes (ARGs). The increasing prevalence of these genetic elements in clinical and environmental settings now poses a major global health threat. While ARGs are well documented in anthropogenically influenced environments, their distribution and origins in remote ecosystems, such as the boreal forests, remain poorly understood. Here, we investigate the occurrence, diversity, and potential origins of ARGs in the boreal lichen Cladonia stellaris.</p><p><strong>Methods: </strong>We conducted the first targeted assessment of ARGs in lichens by analyzing 42 C. stellaris samples from northern and southern lichen woodlands (LWs) in eastern Canada. Using high-throughput quantitative PCR, we screened for 33 ARGs and three mobile genetic elements (MGEs), quantifying their relative abundance. Bacterial community composition was characterized via 16S rRNA gene sequencing. Statistical analyses evaluated geographical patterns, co-occurrence between ARGs and bacterial taxa, and the influence of latitude on ARG distribution.</p><p><strong>Key results: </strong>Ten ARGs conferring resistance to four antibiotic classes (aminoglycosides, beta-lactams, quinolones and sulfonamides), along with one MGE, were detected. The ARGs blaCTX-M-1, qnrB, and qepA were highly prevalent, with qepA often surpassing 16S rRNA gene abundance. Only qnrB showed significantly higher abundance in southern samples. Latitude significantly influenced ARG profiles, whereas bacterial community composition did not.</p><p><strong>Conclusions: </strong>Our findings demonstrate that C. stellaris harbors diverse ARGs in remote boreal ecosystems with limited anthropogenic influence. Proposed explanations for ARG presence include long-distance dispersal via bioaerosols and endogenous development within lichen microbiomes, yet these remain speculative. Future work incorporating bacterial isolation, whole-genome sequencing, metatranscriptomics, air sampling, and metabolomic profiling is necessary to unravel the ecology and evolution of ARGs in natural habitats.</p>\",\"PeriodicalId\":8023,\"journal\":{\"name\":\"Annals of botany\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/aob/mcaf231\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/aob/mcaf231","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Antibiotic resistance genes detected in lichens: insights from Cladonia stellaris.
Background and aims: Antibiotics are natural compounds produced by microorganisms that have long existed in ecosystems. However, the widespread clinical and agricultural use of antibiotics has intensified selective pressures on bacteria, leading to the proliferation of antibiotic resistance genes (ARGs). The increasing prevalence of these genetic elements in clinical and environmental settings now poses a major global health threat. While ARGs are well documented in anthropogenically influenced environments, their distribution and origins in remote ecosystems, such as the boreal forests, remain poorly understood. Here, we investigate the occurrence, diversity, and potential origins of ARGs in the boreal lichen Cladonia stellaris.
Methods: We conducted the first targeted assessment of ARGs in lichens by analyzing 42 C. stellaris samples from northern and southern lichen woodlands (LWs) in eastern Canada. Using high-throughput quantitative PCR, we screened for 33 ARGs and three mobile genetic elements (MGEs), quantifying their relative abundance. Bacterial community composition was characterized via 16S rRNA gene sequencing. Statistical analyses evaluated geographical patterns, co-occurrence between ARGs and bacterial taxa, and the influence of latitude on ARG distribution.
Key results: Ten ARGs conferring resistance to four antibiotic classes (aminoglycosides, beta-lactams, quinolones and sulfonamides), along with one MGE, were detected. The ARGs blaCTX-M-1, qnrB, and qepA were highly prevalent, with qepA often surpassing 16S rRNA gene abundance. Only qnrB showed significantly higher abundance in southern samples. Latitude significantly influenced ARG profiles, whereas bacterial community composition did not.
Conclusions: Our findings demonstrate that C. stellaris harbors diverse ARGs in remote boreal ecosystems with limited anthropogenic influence. Proposed explanations for ARG presence include long-distance dispersal via bioaerosols and endogenous development within lichen microbiomes, yet these remain speculative. Future work incorporating bacterial isolation, whole-genome sequencing, metatranscriptomics, air sampling, and metabolomic profiling is necessary to unravel the ecology and evolution of ARGs in natural habitats.
期刊介绍:
Annals of Botany is an international plant science journal publishing novel and rigorous research in all areas of plant science. It is published monthly in both electronic and printed forms with at least two extra issues each year that focus on a particular theme in plant biology. The Journal is managed by the Annals of Botany Company, a not-for-profit educational charity established to promote plant science worldwide.
The Journal publishes original research papers, invited and submitted review articles, ''Research in Context'' expanding on original work, ''Botanical Briefings'' as short overviews of important topics, and ''Viewpoints'' giving opinions. All papers in each issue are summarized briefly in Content Snapshots , there are topical news items in the Plant Cuttings section and Book Reviews . A rigorous review process ensures that readers are exposed to genuine and novel advances across a wide spectrum of botanical knowledge. All papers aim to advance knowledge and make a difference to our understanding of plant science.