{"title":"释放外泌体对缺血性中风的治疗潜力。","authors":"Meilin Shen, Yan Zhu, Qi Chen, Huanghao Yang","doi":"10.1039/d5bm01007a","DOIUrl":null,"url":null,"abstract":"<p><p>Ischemic stroke, a leading cause of global mortality and disability, faces therapeutic limitations due to the narrow time window and restricted efficacy of current interventions such as thrombolysis and thrombectomy. Recent advancements highlight exosomes-nanoscale extracellular vesicles-as promising therapeutic agents owing to their ability to cross the blood-brain barrier (BBB) and mediate intercellular communication. This review summarizes the biological characteristics of exosomes, their roles in neuroprotection, neuroregeneration, and angiogenesis following ischemic stroke, and emerging strategies utilizing engineered exosome-based nanoparticles for targeted therapy. Despite exosomes showing significant advantages in the treatment of ischemic stroke, their clinical transformation still faces challenges, including the standardized production of exosomes, the clarification of biological distribution mechanisms, and the assessment of immunogenicity and safety. Overcoming these challenges, exosomes are expected to become a safe and efficient therapeutic means for ischemic stroke.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unlocking the therapeutic potential of exosomes for ischemic stroke.\",\"authors\":\"Meilin Shen, Yan Zhu, Qi Chen, Huanghao Yang\",\"doi\":\"10.1039/d5bm01007a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ischemic stroke, a leading cause of global mortality and disability, faces therapeutic limitations due to the narrow time window and restricted efficacy of current interventions such as thrombolysis and thrombectomy. Recent advancements highlight exosomes-nanoscale extracellular vesicles-as promising therapeutic agents owing to their ability to cross the blood-brain barrier (BBB) and mediate intercellular communication. This review summarizes the biological characteristics of exosomes, their roles in neuroprotection, neuroregeneration, and angiogenesis following ischemic stroke, and emerging strategies utilizing engineered exosome-based nanoparticles for targeted therapy. Despite exosomes showing significant advantages in the treatment of ischemic stroke, their clinical transformation still faces challenges, including the standardized production of exosomes, the clarification of biological distribution mechanisms, and the assessment of immunogenicity and safety. Overcoming these challenges, exosomes are expected to become a safe and efficient therapeutic means for ischemic stroke.</p>\",\"PeriodicalId\":65,\"journal\":{\"name\":\"Biomaterials Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1039/d5bm01007a\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d5bm01007a","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Unlocking the therapeutic potential of exosomes for ischemic stroke.
Ischemic stroke, a leading cause of global mortality and disability, faces therapeutic limitations due to the narrow time window and restricted efficacy of current interventions such as thrombolysis and thrombectomy. Recent advancements highlight exosomes-nanoscale extracellular vesicles-as promising therapeutic agents owing to their ability to cross the blood-brain barrier (BBB) and mediate intercellular communication. This review summarizes the biological characteristics of exosomes, their roles in neuroprotection, neuroregeneration, and angiogenesis following ischemic stroke, and emerging strategies utilizing engineered exosome-based nanoparticles for targeted therapy. Despite exosomes showing significant advantages in the treatment of ischemic stroke, their clinical transformation still faces challenges, including the standardized production of exosomes, the clarification of biological distribution mechanisms, and the assessment of immunogenicity and safety. Overcoming these challenges, exosomes are expected to become a safe and efficient therapeutic means for ischemic stroke.
期刊介绍:
Biomaterials Science is an international high impact journal exploring the science of biomaterials and their translation towards clinical use. Its scope encompasses new concepts in biomaterials design, studies into the interaction of biomaterials with the body, and the use of materials to answer fundamental biological questions.