从CsPbBr3纳米晶到Au25簇的热载流子转移:配体控制扩散的关键作用。

IF 5.1 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nanoscale Pub Date : 2025-09-22 DOI:10.1039/d5nr02037a
Shovon Chatterjee, Arun Mukhopadhyay, Surajit Mondal, Smruti Sourav, Suman Bhowmik, Nirmal Goswami, Nimai Mishra
{"title":"从CsPbBr3纳米晶到Au25簇的热载流子转移:配体控制扩散的关键作用。","authors":"Shovon Chatterjee, Arun Mukhopadhyay, Surajit Mondal, Smruti Sourav, Suman Bhowmik, Nirmal Goswami, Nimai Mishra","doi":"10.1039/d5nr02037a","DOIUrl":null,"url":null,"abstract":"<p><p>Efficient hot carrier extraction from a lead halide perovskite is the key to overcoming its Shockley-Queisser limit. The interaction of the perovskite surface with an acceptor plays a vital role in controlling the charge transfer process. Here, we have investigated the charge transfer from CsPbBr<sub>3</sub> nanocrystals to Au<sub>25</sub> clusters. Ultrafast pump-probe spectroscopy confirms that the Au<sub>25</sub> cluster can efficiently extract hot carriers from the CsPbBr<sub>3</sub> nanocrystal. The effect of the ligand environment on the hot carrier transfer is studied by taking oleic acid/oleylamine (pristine) and trioctylphosphine-capped CsPbBr<sub>3</sub> nanocrystals of similar sizes. The experimental data show that the ligand-controlled diffusion mechanism governs the charge transfer process rather than anchoring. The hot carrier transfer process is found to be dependent on the effective interaction distance between the nanocrystal surface and Au<sub>25</sub> controlled by the ligand environment. The hot carrier transfer rate to the Au<sub>25</sub> cluster is estimated to be almost double for trioctylphosphine-capped CsPbBr<sub>3</sub> nanocrystals (9.53 × 10<sup>11</sup> s<sup>-1</sup>) compared to that of pristine nanocrystals (5.47 × 10<sup>11</sup> s<sup>-1</sup>). Thus, optimizing the ligand environment of the perovskite nanocrystals is essential for Au<sub>25</sub> to harvest the hot carriers.</p>","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hot carrier transfer from CsPbBr<sub>3</sub> nanocrystals to Au<sub>25</sub> clusters: the pivotal role of ligand-controlled diffusion.\",\"authors\":\"Shovon Chatterjee, Arun Mukhopadhyay, Surajit Mondal, Smruti Sourav, Suman Bhowmik, Nirmal Goswami, Nimai Mishra\",\"doi\":\"10.1039/d5nr02037a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Efficient hot carrier extraction from a lead halide perovskite is the key to overcoming its Shockley-Queisser limit. The interaction of the perovskite surface with an acceptor plays a vital role in controlling the charge transfer process. Here, we have investigated the charge transfer from CsPbBr<sub>3</sub> nanocrystals to Au<sub>25</sub> clusters. Ultrafast pump-probe spectroscopy confirms that the Au<sub>25</sub> cluster can efficiently extract hot carriers from the CsPbBr<sub>3</sub> nanocrystal. The effect of the ligand environment on the hot carrier transfer is studied by taking oleic acid/oleylamine (pristine) and trioctylphosphine-capped CsPbBr<sub>3</sub> nanocrystals of similar sizes. The experimental data show that the ligand-controlled diffusion mechanism governs the charge transfer process rather than anchoring. The hot carrier transfer process is found to be dependent on the effective interaction distance between the nanocrystal surface and Au<sub>25</sub> controlled by the ligand environment. The hot carrier transfer rate to the Au<sub>25</sub> cluster is estimated to be almost double for trioctylphosphine-capped CsPbBr<sub>3</sub> nanocrystals (9.53 × 10<sup>11</sup> s<sup>-1</sup>) compared to that of pristine nanocrystals (5.47 × 10<sup>11</sup> s<sup>-1</sup>). Thus, optimizing the ligand environment of the perovskite nanocrystals is essential for Au<sub>25</sub> to harvest the hot carriers.</p>\",\"PeriodicalId\":92,\"journal\":{\"name\":\"Nanoscale\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5nr02037a\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5nr02037a","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

从卤化铅钙钛矿中高效提取热载流子是克服其Shockley-Queisser极限的关键。钙钛矿表面与受体的相互作用在控制电荷转移过程中起着至关重要的作用。在这里,我们研究了CsPbBr3纳米晶体到Au25簇的电荷转移。超快泵浦探针光谱证实了Au25簇能有效地从CsPbBr3纳米晶体中提取热载流子。采用相似尺寸的油酸/油胺(原始)和三辛基膦盖顶CsPbBr3纳米晶体,研究了配体环境对热载流子转移的影响。实验数据表明,配体控制的扩散机制控制了电荷转移过程,而不是锚定过程。热载流子转移过程取决于配体环境控制的纳米晶体表面与Au25的有效相互作用距离。三辛基膦封顶的CsPbBr3纳米晶体(9.53 × 1011 s-1)向Au25簇的热载流子迁移速率几乎是原始纳米晶体(5.47 × 1011 s-1)的两倍。因此,优化钙钛矿纳米晶体的配体环境是获得Au25热载流子的关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hot carrier transfer from CsPbBr3 nanocrystals to Au25 clusters: the pivotal role of ligand-controlled diffusion.

Efficient hot carrier extraction from a lead halide perovskite is the key to overcoming its Shockley-Queisser limit. The interaction of the perovskite surface with an acceptor plays a vital role in controlling the charge transfer process. Here, we have investigated the charge transfer from CsPbBr3 nanocrystals to Au25 clusters. Ultrafast pump-probe spectroscopy confirms that the Au25 cluster can efficiently extract hot carriers from the CsPbBr3 nanocrystal. The effect of the ligand environment on the hot carrier transfer is studied by taking oleic acid/oleylamine (pristine) and trioctylphosphine-capped CsPbBr3 nanocrystals of similar sizes. The experimental data show that the ligand-controlled diffusion mechanism governs the charge transfer process rather than anchoring. The hot carrier transfer process is found to be dependent on the effective interaction distance between the nanocrystal surface and Au25 controlled by the ligand environment. The hot carrier transfer rate to the Au25 cluster is estimated to be almost double for trioctylphosphine-capped CsPbBr3 nanocrystals (9.53 × 1011 s-1) compared to that of pristine nanocrystals (5.47 × 1011 s-1). Thus, optimizing the ligand environment of the perovskite nanocrystals is essential for Au25 to harvest the hot carriers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信