{"title":"一种具有长期血液相容性和初步抗炎性能的模拟肝素聚甘油涂层用于血液接触装置。","authors":"Kunpeng Liu, Philip Nickl, Jun Feng, Rainer Haag","doi":"10.1002/adhm.202502766","DOIUrl":null,"url":null,"abstract":"<p><p>Blood-contacting medical devices play a crucial role in clinical interventions, but their susceptibility to thrombosis and inflammation poses serious risks to treatment outcomes and patient safety. This study presents a novel coating that combines dendritic polyglycerol amine (dPGA), dendritic polyglycerol aldehyde (dPG-CHO), and linear polyglycerol sulfate (lPGS) using a layer-by-layer self-assembly method (LBL) on a polystyrene surface. The immobilization of dendritic polyglycerol enhances surface coverage, enabling the incorporation of a higher density of heparin-mimicking lPGS, while the covalent bonding ensures the coating's long-term stability. Compared to the pristine substrate, the coating significantly reduced platelet adhesion and activation. Notably, its hemocompatibility effects persist even after 30 days. Furthermore, co-incubation experiments with RAW264.7 macrophages confirmed the anti-inflammatory properties of the polyglycerol-based coating. These results demonstrate that this heparin-mimetic coating effectively improves the hemocompatibility of polystyrene and has the potential to be applied to other blood-contacting materials.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e02766"},"PeriodicalIF":9.6000,"publicationDate":"2025-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Robust Heparin-Mimicking Polyglycerol-Based Coating for Blood-Contacting Devices with Long-Term Hemocompatibility and Preliminary Anti-Inflammatory Properties.\",\"authors\":\"Kunpeng Liu, Philip Nickl, Jun Feng, Rainer Haag\",\"doi\":\"10.1002/adhm.202502766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Blood-contacting medical devices play a crucial role in clinical interventions, but their susceptibility to thrombosis and inflammation poses serious risks to treatment outcomes and patient safety. This study presents a novel coating that combines dendritic polyglycerol amine (dPGA), dendritic polyglycerol aldehyde (dPG-CHO), and linear polyglycerol sulfate (lPGS) using a layer-by-layer self-assembly method (LBL) on a polystyrene surface. The immobilization of dendritic polyglycerol enhances surface coverage, enabling the incorporation of a higher density of heparin-mimicking lPGS, while the covalent bonding ensures the coating's long-term stability. Compared to the pristine substrate, the coating significantly reduced platelet adhesion and activation. Notably, its hemocompatibility effects persist even after 30 days. Furthermore, co-incubation experiments with RAW264.7 macrophages confirmed the anti-inflammatory properties of the polyglycerol-based coating. These results demonstrate that this heparin-mimetic coating effectively improves the hemocompatibility of polystyrene and has the potential to be applied to other blood-contacting materials.</p>\",\"PeriodicalId\":113,\"journal\":{\"name\":\"Advanced Healthcare Materials\",\"volume\":\" \",\"pages\":\"e02766\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Healthcare Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adhm.202502766\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202502766","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
A Robust Heparin-Mimicking Polyglycerol-Based Coating for Blood-Contacting Devices with Long-Term Hemocompatibility and Preliminary Anti-Inflammatory Properties.
Blood-contacting medical devices play a crucial role in clinical interventions, but their susceptibility to thrombosis and inflammation poses serious risks to treatment outcomes and patient safety. This study presents a novel coating that combines dendritic polyglycerol amine (dPGA), dendritic polyglycerol aldehyde (dPG-CHO), and linear polyglycerol sulfate (lPGS) using a layer-by-layer self-assembly method (LBL) on a polystyrene surface. The immobilization of dendritic polyglycerol enhances surface coverage, enabling the incorporation of a higher density of heparin-mimicking lPGS, while the covalent bonding ensures the coating's long-term stability. Compared to the pristine substrate, the coating significantly reduced platelet adhesion and activation. Notably, its hemocompatibility effects persist even after 30 days. Furthermore, co-incubation experiments with RAW264.7 macrophages confirmed the anti-inflammatory properties of the polyglycerol-based coating. These results demonstrate that this heparin-mimetic coating effectively improves the hemocompatibility of polystyrene and has the potential to be applied to other blood-contacting materials.
期刊介绍:
Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.