氟化物对不锈钢的腐蚀:以其作为质子交换膜水电解双极板材料为例

IF 6.6 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-09-22 DOI:10.1002/cssc.202501561
Lena Fiedler, Darius Hoffmeister, Tien-Ching Ma, Julian Schwarz, Ferdinand Günther, Thomas Przybilla, Erdmann Spiecker, Simon Thiele, Dominik Dworschak, Karl J J Mayrhofer, Andreas Hutzler
{"title":"氟化物对不锈钢的腐蚀:以其作为质子交换膜水电解双极板材料为例","authors":"Lena Fiedler, Darius Hoffmeister, Tien-Ching Ma, Julian Schwarz, Ferdinand Günther, Thomas Przybilla, Erdmann Spiecker, Simon Thiele, Dominik Dworschak, Karl J J Mayrhofer, Andreas Hutzler","doi":"10.1002/cssc.202501561","DOIUrl":null,"url":null,"abstract":"<p><p>Stainless steel is a promising material for bipolar plates (BPP) in proton exchange membrane water electrolysis (PEMWE) that could drastically reduce stack costs. However, dissolution of Fe from stainless steel BPP might trigger membrane degradation, which releases fluoride. Fluoride in turn could accelerate stainless steel corrosion. Therefore, the influence of fluoride contamination (namely 0, 1, 5, and 20 ppm in 0.5 mM H<sub>2</sub>SO<sub>4</sub>) on the dissolution stability of stainless steel (316L) is investigated utilizing a scanning flow cell coupled on-line to an inductively coupled plasma mass spectrometer (SFC-ICP-MS). Fluoride enhances the dissolution exponentially, resulting in enhanced dissolution efficiencies with increased fluoride concentration reaching ≈50% at 20 ppm. Complementary micro and nanostructure analysis (laser profilometry, scanning electron microscopy, and scanning transmission electron microscopy with energy-dispersive X-ray spectroscopy) reveals pitting corrosion, whose severity and occurrence appear highly increased with higher fluoride concentration. The results suggest that fluoride impurities in combination with exposed stainless steel, e.g., due to coating imperfections, should be avoided in PEMWE application, as accumulation of impurities of both might lead to a self-accelerating degradation process.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202501561"},"PeriodicalIF":6.6000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fluoride-Induced Corrosion of Stainless Steel: A Case Study for its Application as Proton Exchange Membrane Water Electrolysis Bipolar Plate Material.\",\"authors\":\"Lena Fiedler, Darius Hoffmeister, Tien-Ching Ma, Julian Schwarz, Ferdinand Günther, Thomas Przybilla, Erdmann Spiecker, Simon Thiele, Dominik Dworschak, Karl J J Mayrhofer, Andreas Hutzler\",\"doi\":\"10.1002/cssc.202501561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Stainless steel is a promising material for bipolar plates (BPP) in proton exchange membrane water electrolysis (PEMWE) that could drastically reduce stack costs. However, dissolution of Fe from stainless steel BPP might trigger membrane degradation, which releases fluoride. Fluoride in turn could accelerate stainless steel corrosion. Therefore, the influence of fluoride contamination (namely 0, 1, 5, and 20 ppm in 0.5 mM H<sub>2</sub>SO<sub>4</sub>) on the dissolution stability of stainless steel (316L) is investigated utilizing a scanning flow cell coupled on-line to an inductively coupled plasma mass spectrometer (SFC-ICP-MS). Fluoride enhances the dissolution exponentially, resulting in enhanced dissolution efficiencies with increased fluoride concentration reaching ≈50% at 20 ppm. Complementary micro and nanostructure analysis (laser profilometry, scanning electron microscopy, and scanning transmission electron microscopy with energy-dispersive X-ray spectroscopy) reveals pitting corrosion, whose severity and occurrence appear highly increased with higher fluoride concentration. The results suggest that fluoride impurities in combination with exposed stainless steel, e.g., due to coating imperfections, should be avoided in PEMWE application, as accumulation of impurities of both might lead to a self-accelerating degradation process.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\" \",\"pages\":\"e202501561\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202501561\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202501561","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

不锈钢是质子交换膜水电解(PEMWE)中极极板(BPP)的一种有前途的材料,可以大大降低堆成本。然而,铁从不锈钢BPP中溶解可能会引发膜降解,从而释放氟化物。氟化物反过来又会加速不锈钢的腐蚀。因此,研究了氟污染(即0.5 mM H2SO4中0、1、5和20 ppm)对不锈钢(316L)溶解稳定性的影响,利用扫描流池与电感耦合等离子体质谱仪(SFC-ICP-MS)在线耦合。氟化物使溶解呈指数级增加,导致溶解效率提高,氟浓度增加,在20ppm时达到约50%。互补的微纳结构分析(激光轮廓术、扫描电镜和带能量色散x射线能谱的扫描透射电镜)显示,随着氟化物浓度的增加,点蚀的严重程度和发生率都大大增加。结果表明,在PEMWE应用中,应避免氟杂质与暴露的不锈钢结合,例如由于涂层缺陷,因为两者的杂质积累可能导致自加速降解过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fluoride-Induced Corrosion of Stainless Steel: A Case Study for its Application as Proton Exchange Membrane Water Electrolysis Bipolar Plate Material.

Stainless steel is a promising material for bipolar plates (BPP) in proton exchange membrane water electrolysis (PEMWE) that could drastically reduce stack costs. However, dissolution of Fe from stainless steel BPP might trigger membrane degradation, which releases fluoride. Fluoride in turn could accelerate stainless steel corrosion. Therefore, the influence of fluoride contamination (namely 0, 1, 5, and 20 ppm in 0.5 mM H2SO4) on the dissolution stability of stainless steel (316L) is investigated utilizing a scanning flow cell coupled on-line to an inductively coupled plasma mass spectrometer (SFC-ICP-MS). Fluoride enhances the dissolution exponentially, resulting in enhanced dissolution efficiencies with increased fluoride concentration reaching ≈50% at 20 ppm. Complementary micro and nanostructure analysis (laser profilometry, scanning electron microscopy, and scanning transmission electron microscopy with energy-dispersive X-ray spectroscopy) reveals pitting corrosion, whose severity and occurrence appear highly increased with higher fluoride concentration. The results suggest that fluoride impurities in combination with exposed stainless steel, e.g., due to coating imperfections, should be avoided in PEMWE application, as accumulation of impurities of both might lead to a self-accelerating degradation process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信