人子宫内膜细胞外基质水凝胶促进子宫内膜间充质干细胞的子宫内膜再生。

IF 9.6 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Jingwen Xu, Philip C N Chiu, Ernest H Y Ng, Sentao Hu, Zi Ye, Liaobing Xin, Lie Ma, Songying Zhang, William S B Yeung, Rachel W S Chan
{"title":"人子宫内膜细胞外基质水凝胶促进子宫内膜间充质干细胞的子宫内膜再生。","authors":"Jingwen Xu, Philip C N Chiu, Ernest H Y Ng, Sentao Hu, Zi Ye, Liaobing Xin, Lie Ma, Songying Zhang, William S B Yeung, Rachel W S Chan","doi":"10.1002/adhm.202501767","DOIUrl":null,"url":null,"abstract":"<p><p>The extracellular matrix (ECM) constantly remodels to tailor a temporal spatial specific environment for the residing cells to respond to physiological or pathological stimuli. Endometrial mesenchymal stem cells (eMSC) are excellent therapeutic candidates for treating endometrial problems. In-depth investigation of the native niche to understand the regulatory mechanisms of the stem cells will enable greater translational potentials in regenerating the thin or damaged endometrium. To understand the ECM niche of eMSC, endometrial ECM from full thickness human endometrial tissues at different menstrual phases are preserved by tissue decellularization and then transformed into hydrogel material (EndoGel). EndoGel exhibits excellent compatibility with eMSC by enhancing the expansion of eMSC in vitro and facilitating the therapeutic regenerative effect in vivo evidenced by the improved fertility outcome. Comparative study of the proliferative to secretory phase EndoGel reveals unique matrisome at specific phase of the human menstrual cycle. The post-regenerated endometrium shows distinct transcriptomic profile when transplanted with different menstrual phase EndoGel, suggesting the regulatory effect of the tissue matrix is menstrual phase specific. This is the first study comparing the endometrial matrix from specific human menstrual cycle and exploring its therapeutic potentials as a supportive biomaterial for eMSC to enhance endometrial regeneration.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e01767"},"PeriodicalIF":9.6000,"publicationDate":"2025-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human Endometrial Extracellular Matrix Hydrogel Facilitated Endometrial Mesenchymal Stem Cells for Endometrial Regeneration.\",\"authors\":\"Jingwen Xu, Philip C N Chiu, Ernest H Y Ng, Sentao Hu, Zi Ye, Liaobing Xin, Lie Ma, Songying Zhang, William S B Yeung, Rachel W S Chan\",\"doi\":\"10.1002/adhm.202501767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The extracellular matrix (ECM) constantly remodels to tailor a temporal spatial specific environment for the residing cells to respond to physiological or pathological stimuli. Endometrial mesenchymal stem cells (eMSC) are excellent therapeutic candidates for treating endometrial problems. In-depth investigation of the native niche to understand the regulatory mechanisms of the stem cells will enable greater translational potentials in regenerating the thin or damaged endometrium. To understand the ECM niche of eMSC, endometrial ECM from full thickness human endometrial tissues at different menstrual phases are preserved by tissue decellularization and then transformed into hydrogel material (EndoGel). EndoGel exhibits excellent compatibility with eMSC by enhancing the expansion of eMSC in vitro and facilitating the therapeutic regenerative effect in vivo evidenced by the improved fertility outcome. Comparative study of the proliferative to secretory phase EndoGel reveals unique matrisome at specific phase of the human menstrual cycle. The post-regenerated endometrium shows distinct transcriptomic profile when transplanted with different menstrual phase EndoGel, suggesting the regulatory effect of the tissue matrix is menstrual phase specific. This is the first study comparing the endometrial matrix from specific human menstrual cycle and exploring its therapeutic potentials as a supportive biomaterial for eMSC to enhance endometrial regeneration.</p>\",\"PeriodicalId\":113,\"journal\":{\"name\":\"Advanced Healthcare Materials\",\"volume\":\" \",\"pages\":\"e01767\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Healthcare Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adhm.202501767\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202501767","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

细胞外基质(ECM)不断重塑,为驻留的细胞定制一个特定的时空环境,以应对生理或病理刺激。子宫内膜间充质干细胞(eMSC)是治疗子宫内膜问题的良好候选治疗方法。深入研究原生生态位,了解干细胞的调控机制,将为薄或受损子宫内膜的再生提供更大的翻译潜力。为了了解eMSC的ECM生态位,采用组织脱细胞法保存不同经期全层人子宫内膜组织的ECM,然后转化为水凝胶材料(EndoGel)。EndoGel通过增强体外eMSC的扩张和促进体内eMSC的治疗再生效果,显示出与eMSC的良好相容性,这一点得到了生育结果的改善。EndoGel增殖期与分泌期的比较研究揭示了人类月经周期特定阶段的独特母体。不同经期EndoGel移植后的再生子宫内膜显示出不同的转录组学特征,表明组织基质的调节作用是经期特异性的。这是第一个比较来自特定人类月经周期的子宫内膜基质并探索其作为eMSC支持生物材料促进子宫内膜再生的治疗潜力的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Human Endometrial Extracellular Matrix Hydrogel Facilitated Endometrial Mesenchymal Stem Cells for Endometrial Regeneration.

The extracellular matrix (ECM) constantly remodels to tailor a temporal spatial specific environment for the residing cells to respond to physiological or pathological stimuli. Endometrial mesenchymal stem cells (eMSC) are excellent therapeutic candidates for treating endometrial problems. In-depth investigation of the native niche to understand the regulatory mechanisms of the stem cells will enable greater translational potentials in regenerating the thin or damaged endometrium. To understand the ECM niche of eMSC, endometrial ECM from full thickness human endometrial tissues at different menstrual phases are preserved by tissue decellularization and then transformed into hydrogel material (EndoGel). EndoGel exhibits excellent compatibility with eMSC by enhancing the expansion of eMSC in vitro and facilitating the therapeutic regenerative effect in vivo evidenced by the improved fertility outcome. Comparative study of the proliferative to secretory phase EndoGel reveals unique matrisome at specific phase of the human menstrual cycle. The post-regenerated endometrium shows distinct transcriptomic profile when transplanted with different menstrual phase EndoGel, suggesting the regulatory effect of the tissue matrix is menstrual phase specific. This is the first study comparing the endometrial matrix from specific human menstrual cycle and exploring its therapeutic potentials as a supportive biomaterial for eMSC to enhance endometrial regeneration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Healthcare Materials
Advanced Healthcare Materials 工程技术-生物材料
CiteScore
14.40
自引率
3.00%
发文量
600
审稿时长
1.8 months
期刊介绍: Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信