低温陶瓷燃料电池用质子导电非晶氧化铝电解质。

IF 3.7 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Shuo Wan, Fan Yang, Chen Xia, Shanghai Wei, Shahzad Rasool, Sarfraz Rana, Bin Zhu
{"title":"低温陶瓷燃料电池用质子导电非晶氧化铝电解质。","authors":"Shuo Wan, Fan Yang, Chen Xia, Shanghai Wei, Shahzad Rasool, Sarfraz Rana, Bin Zhu","doi":"10.1002/chem.202502092","DOIUrl":null,"url":null,"abstract":"<p><p>The development of high-performance electrolytes enabling rapid ionic transport represents a critical pathway for operational temperature reduction in solid oxide fuel cells (SOFCs). This study introduces amorphous alumina (AlO<sub>x</sub>) as a novel electrolyte material, systematically investigating its structural characteristics and charge transport mechanisms through comparative analysis with crystalline alumina (α-Al<sub>2</sub>O<sub>3</sub>, γ-Al<sub>2</sub>O<sub>3</sub>) and conventional gadolinium-doped ceria (GDC). It is found that AlO<sub>x</sub> possesses a notable enrichment of oxygen vacancy concentration. Its unique disordered atomic configuration plays a vital role in facilitating multiple pathways to enable fast ionic transport, resulting in high ionic conductivity of 0.08-0.12 S/cm at 480-540 °C, as evidenced by electrochemical impedance spectroscopy (EIS), which is one order of magnitude superior to its crystalline counterpart. When implemented in symmetrical SOFC configurations, the AlO<sub>x</sub> electrolyte demonstrates unprecedented power density of 677 mW/cm<sup>2</sup> at 540 °C. Further distribution of relaxation times (DRT) analysis confirms the predominance of protonic conduction pathways in AlO<sub>x</sub> while providing discernment of its electrochemical sub-processes. This work thus provides a new advanced electrolyte for low-temperature SOFCs while providing insights into amorphous ceramic.</p>","PeriodicalId":144,"journal":{"name":"Chemistry - A European Journal","volume":" ","pages":"e02092"},"PeriodicalIF":3.7000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proton-Conducting Amorphous Alumina Electrolytes for Low-Temperature Ceramic Fuel Cells.\",\"authors\":\"Shuo Wan, Fan Yang, Chen Xia, Shanghai Wei, Shahzad Rasool, Sarfraz Rana, Bin Zhu\",\"doi\":\"10.1002/chem.202502092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The development of high-performance electrolytes enabling rapid ionic transport represents a critical pathway for operational temperature reduction in solid oxide fuel cells (SOFCs). This study introduces amorphous alumina (AlO<sub>x</sub>) as a novel electrolyte material, systematically investigating its structural characteristics and charge transport mechanisms through comparative analysis with crystalline alumina (α-Al<sub>2</sub>O<sub>3</sub>, γ-Al<sub>2</sub>O<sub>3</sub>) and conventional gadolinium-doped ceria (GDC). It is found that AlO<sub>x</sub> possesses a notable enrichment of oxygen vacancy concentration. Its unique disordered atomic configuration plays a vital role in facilitating multiple pathways to enable fast ionic transport, resulting in high ionic conductivity of 0.08-0.12 S/cm at 480-540 °C, as evidenced by electrochemical impedance spectroscopy (EIS), which is one order of magnitude superior to its crystalline counterpart. When implemented in symmetrical SOFC configurations, the AlO<sub>x</sub> electrolyte demonstrates unprecedented power density of 677 mW/cm<sup>2</sup> at 540 °C. Further distribution of relaxation times (DRT) analysis confirms the predominance of protonic conduction pathways in AlO<sub>x</sub> while providing discernment of its electrochemical sub-processes. This work thus provides a new advanced electrolyte for low-temperature SOFCs while providing insights into amorphous ceramic.</p>\",\"PeriodicalId\":144,\"journal\":{\"name\":\"Chemistry - A European Journal\",\"volume\":\" \",\"pages\":\"e02092\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry - A European Journal\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/chem.202502092\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - A European Journal","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/chem.202502092","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

开发能够实现快速离子传输的高性能电解质是降低固体氧化物燃料电池(sofc)工作温度的关键途径。本研究将无定形氧化铝(AlOx)作为一种新型电解质材料,通过与晶体氧化铝(α-Al2O3、γ-Al2O3)和常规掺钆铈(GDC)的对比分析,系统研究了其结构特性和电荷输运机制。发现AlOx具有明显的氧空位浓度富集。其独特的无序原子构型在促进多种途径实现快速离子传输方面起着至关重要的作用,导致在480-540°C时具有0.08-0.12 S/cm的高离子电导率,电化学阻抗谱(EIS)证明了这一点,这比其晶体对偶物高出一个数量级。在对称SOFC配置下,AlOx电解质在540°C下表现出前所未有的677 mW/cm2的功率密度。进一步的弛豫时间分布(DRT)分析证实了质子传导途径在AlOx中的优势,同时提供了其电化学子过程的识别。因此,这项工作为低温SOFCs提供了一种新的先进电解质,同时为非晶陶瓷提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proton-Conducting Amorphous Alumina Electrolytes for Low-Temperature Ceramic Fuel Cells.

The development of high-performance electrolytes enabling rapid ionic transport represents a critical pathway for operational temperature reduction in solid oxide fuel cells (SOFCs). This study introduces amorphous alumina (AlOx) as a novel electrolyte material, systematically investigating its structural characteristics and charge transport mechanisms through comparative analysis with crystalline alumina (α-Al2O3, γ-Al2O3) and conventional gadolinium-doped ceria (GDC). It is found that AlOx possesses a notable enrichment of oxygen vacancy concentration. Its unique disordered atomic configuration plays a vital role in facilitating multiple pathways to enable fast ionic transport, resulting in high ionic conductivity of 0.08-0.12 S/cm at 480-540 °C, as evidenced by electrochemical impedance spectroscopy (EIS), which is one order of magnitude superior to its crystalline counterpart. When implemented in symmetrical SOFC configurations, the AlOx electrolyte demonstrates unprecedented power density of 677 mW/cm2 at 540 °C. Further distribution of relaxation times (DRT) analysis confirms the predominance of protonic conduction pathways in AlOx while providing discernment of its electrochemical sub-processes. This work thus provides a new advanced electrolyte for low-temperature SOFCs while providing insights into amorphous ceramic.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemistry - A European Journal
Chemistry - A European Journal 化学-化学综合
CiteScore
7.90
自引率
4.70%
发文量
1808
审稿时长
1.8 months
期刊介绍: Chemistry—A European Journal is a truly international journal with top quality contributions (2018 ISI Impact Factor: 5.16). It publishes a wide range of outstanding Reviews, Minireviews, Concepts, Full Papers, and Communications from all areas of chemistry and related fields. Based in Europe Chemistry—A European Journal provides an excellent platform for increasing the visibility of European chemistry as well as for featuring the best research from authors from around the world. All manuscripts are peer-reviewed, and electronic processing ensures accurate reproduction of text and data, plus short publication times. The Concepts section provides nonspecialist readers with a useful conceptual guide to unfamiliar areas and experts with new angles on familiar problems. Chemistry—A European Journal is published on behalf of ChemPubSoc Europe, a group of 16 national chemical societies from within Europe, and supported by the Asian Chemical Editorial Societies. The ChemPubSoc Europe family comprises: Angewandte Chemie, Chemistry—A European Journal, European Journal of Organic Chemistry, European Journal of Inorganic Chemistry, ChemPhysChem, ChemBioChem, ChemMedChem, ChemCatChem, ChemSusChem, ChemPlusChem, ChemElectroChem, and ChemistryOpen.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信