Gwan-Jin Ko, Venkata Ramesh Naganaboina, Emad S. Goda, Ankan Dutta, Huanyu Cheng, Suk-Won Hwang
{"title":"基于聚合物复合材料的瞬态电子系统","authors":"Gwan-Jin Ko, Venkata Ramesh Naganaboina, Emad S. Goda, Ankan Dutta, Huanyu Cheng, Suk-Won Hwang","doi":"10.1002/anbr.202400126","DOIUrl":null,"url":null,"abstract":"<p>Biocompatible and biodegradable polymer composite systems, featuring electrical and mechanical functionalities, have been studied as a means to enable biointegrated electronics, facilitating the acquisition of diverse valuable data. This involves establishing dependable connections with the pliable, irregular surfaces of human skin and organs to obtain a range of useful information. Previously, biodegradable conductive organic/inorganic materials such as conducting polymers and metal derivatives have been reviewed as a filler for polymer composites; however, there are no reviews about the utilization of conductive, semiconductive, and dielectric composites with various electrical/functional properties as electronic components for biomedical applications. These composites show considerable functions such as biodegradability, compatibility, electrochemical properties, magnetism, and photoluminescence. This review introduces the recent advances in biodegradable electronic devices using conductors, semiconductors, and dielectric-based composites besides their materials, and fabrication methods for monitoring physiological signals, therapeutic systems, energy storage, and drug delivery, as well as substrate and encapsulation materials.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"5 9","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400126","citationCount":"0","resultStr":"{\"title\":\"Towards Polymer Composite-Based Transient Electronic Systems\",\"authors\":\"Gwan-Jin Ko, Venkata Ramesh Naganaboina, Emad S. Goda, Ankan Dutta, Huanyu Cheng, Suk-Won Hwang\",\"doi\":\"10.1002/anbr.202400126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Biocompatible and biodegradable polymer composite systems, featuring electrical and mechanical functionalities, have been studied as a means to enable biointegrated electronics, facilitating the acquisition of diverse valuable data. This involves establishing dependable connections with the pliable, irregular surfaces of human skin and organs to obtain a range of useful information. Previously, biodegradable conductive organic/inorganic materials such as conducting polymers and metal derivatives have been reviewed as a filler for polymer composites; however, there are no reviews about the utilization of conductive, semiconductive, and dielectric composites with various electrical/functional properties as electronic components for biomedical applications. These composites show considerable functions such as biodegradability, compatibility, electrochemical properties, magnetism, and photoluminescence. This review introduces the recent advances in biodegradable electronic devices using conductors, semiconductors, and dielectric-based composites besides their materials, and fabrication methods for monitoring physiological signals, therapeutic systems, energy storage, and drug delivery, as well as substrate and encapsulation materials.</p>\",\"PeriodicalId\":29975,\"journal\":{\"name\":\"Advanced Nanobiomed Research\",\"volume\":\"5 9\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400126\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nanobiomed Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/anbr.202400126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanobiomed Research","FirstCategoryId":"1085","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/anbr.202400126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Towards Polymer Composite-Based Transient Electronic Systems
Biocompatible and biodegradable polymer composite systems, featuring electrical and mechanical functionalities, have been studied as a means to enable biointegrated electronics, facilitating the acquisition of diverse valuable data. This involves establishing dependable connections with the pliable, irregular surfaces of human skin and organs to obtain a range of useful information. Previously, biodegradable conductive organic/inorganic materials such as conducting polymers and metal derivatives have been reviewed as a filler for polymer composites; however, there are no reviews about the utilization of conductive, semiconductive, and dielectric composites with various electrical/functional properties as electronic components for biomedical applications. These composites show considerable functions such as biodegradability, compatibility, electrochemical properties, magnetism, and photoluminescence. This review introduces the recent advances in biodegradable electronic devices using conductors, semiconductors, and dielectric-based composites besides their materials, and fabrication methods for monitoring physiological signals, therapeutic systems, energy storage, and drug delivery, as well as substrate and encapsulation materials.
期刊介绍:
Advanced NanoBiomed Research will provide an Open Access home for cutting-edge nanomedicine, bioengineering and biomaterials research aimed at improving human health. The journal will capture a broad spectrum of research from increasingly multi- and interdisciplinary fields of the traditional areas of biomedicine, bioengineering and health-related materials science as well as precision and personalized medicine, drug delivery, and artificial intelligence-driven health science.
The scope of Advanced NanoBiomed Research will cover the following key subject areas:
▪ Nanomedicine and nanotechnology, with applications in drug and gene delivery, diagnostics, theranostics, photothermal and photodynamic therapy and multimodal imaging.
▪ Biomaterials, including hydrogels, 2D materials, biopolymers, composites, biodegradable materials, biohybrids and biomimetics (such as artificial cells, exosomes and extracellular vesicles), as well as all organic and inorganic materials for biomedical applications.
▪ Biointerfaces, such as anti-microbial surfaces and coatings, as well as interfaces for cellular engineering, immunoengineering and 3D cell culture.
▪ Biofabrication including (bio)inks and technologies, towards generation of functional tissues and organs.
▪ Tissue engineering and regenerative medicine, including scaffolds and scaffold-free approaches, for bone, ligament, muscle, skin, neural, cardiac tissue engineering and tissue vascularization.
▪ Devices for healthcare applications, disease modelling and treatment, such as diagnostics, lab-on-a-chip, organs-on-a-chip, bioMEMS, bioelectronics, wearables, actuators, soft robotics, and intelligent drug delivery systems.
with a strong focus on applications of these fields, from bench-to-bedside, for treatment of all diseases and disorders, such as infectious, autoimmune, cardiovascular and metabolic diseases, neurological disorders and cancer; including pharmacology and toxicology studies.