Ravi Patel, Ritu Sharma, Dignesh Khunt, Binit Patel
{"title":"经验证的稳定性指示反相高效液相色谱法用于自乳化给药系统:配方表征和增强渗透性","authors":"Ravi Patel, Ritu Sharma, Dignesh Khunt, Binit Patel","doi":"10.1002/ardp.70100","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This study presents a novel analytical and formulation strategy to enhance the oral delivery and quality assessment of Nirmatrelvir, a poorly water-soluble antiviral agent. A self-emulsifying drug delivery system (SEDDS) was developed using Labrafac MC 60, ethanol, and Transcutol HP (55:25:20), resulting in a nanoemulsion with a droplet size of 145.23 ± 3.23 nm, low polydispersity index (0.189 ± 0.023), and high transmittance (98.97 ± 0.25%). The formulation exhibited rapid emulsification (< 90 s) and significantly improved permeability, achieving a fivefold increase (Papp: 4.20 × 10<sup>−6</sup> cm/s) across Caco-2 cell monolayers compared to the tablet formulation. A stability-indicating reverse-phase HPLC method was developed using a mobile phase of 5 mM potassium dihydrogen phosphate buffer (pH 4.0) and acetonitrile (40:60, v/v), and validated per ICH Q2(R1) guidelines. The method showed excellent linearity (<i>R</i><sup>2</sup> = 0.9999), accuracy (98.6%–100.2%), precision (%RSD < 0.3%), and robustness. An optimized sample preparation protocol ensured efficient extraction of Nirmatrelvir from the SEDDS matrix with minimal interference. Forced degradation studies under ICH Q1A(R2) demonstrated that Nirmatrelvir remained stable under oxidative (98.44%), thermal (98.45%), and photolytic (98.50%) conditions. Maximum degradation was observed under alkaline stress (20.56% at 0.5 N NaOH), followed by acidic stress (13.53% at 5 N HCl). The major alkaline degradant (Rt 2.7 min) was characterized by LC-TQ/MS (<i>m/z</i> 518.2 [M+H]⁺). The method's sustainability was supported by an AGREE score of 0.64 and a Whiteness score of 85.4, offering a validated platform for routine analysis of Nirmatrelvir in lipid-based formulations.</p></div>","PeriodicalId":128,"journal":{"name":"Archiv der Pharmazie","volume":"358 9","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Validated Stability-Indicating RP-HPLC Method for Nirmatrelvir in Self-Emulsifying Drug Delivery Systems: Formulation Characterization and Permeability Enhancement\",\"authors\":\"Ravi Patel, Ritu Sharma, Dignesh Khunt, Binit Patel\",\"doi\":\"10.1002/ardp.70100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>This study presents a novel analytical and formulation strategy to enhance the oral delivery and quality assessment of Nirmatrelvir, a poorly water-soluble antiviral agent. A self-emulsifying drug delivery system (SEDDS) was developed using Labrafac MC 60, ethanol, and Transcutol HP (55:25:20), resulting in a nanoemulsion with a droplet size of 145.23 ± 3.23 nm, low polydispersity index (0.189 ± 0.023), and high transmittance (98.97 ± 0.25%). The formulation exhibited rapid emulsification (< 90 s) and significantly improved permeability, achieving a fivefold increase (Papp: 4.20 × 10<sup>−6</sup> cm/s) across Caco-2 cell monolayers compared to the tablet formulation. A stability-indicating reverse-phase HPLC method was developed using a mobile phase of 5 mM potassium dihydrogen phosphate buffer (pH 4.0) and acetonitrile (40:60, v/v), and validated per ICH Q2(R1) guidelines. The method showed excellent linearity (<i>R</i><sup>2</sup> = 0.9999), accuracy (98.6%–100.2%), precision (%RSD < 0.3%), and robustness. An optimized sample preparation protocol ensured efficient extraction of Nirmatrelvir from the SEDDS matrix with minimal interference. Forced degradation studies under ICH Q1A(R2) demonstrated that Nirmatrelvir remained stable under oxidative (98.44%), thermal (98.45%), and photolytic (98.50%) conditions. Maximum degradation was observed under alkaline stress (20.56% at 0.5 N NaOH), followed by acidic stress (13.53% at 5 N HCl). The major alkaline degradant (Rt 2.7 min) was characterized by LC-TQ/MS (<i>m/z</i> 518.2 [M+H]⁺). The method's sustainability was supported by an AGREE score of 0.64 and a Whiteness score of 85.4, offering a validated platform for routine analysis of Nirmatrelvir in lipid-based formulations.</p></div>\",\"PeriodicalId\":128,\"journal\":{\"name\":\"Archiv der Pharmazie\",\"volume\":\"358 9\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Pharmazie\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ardp.70100\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Pharmazie","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ardp.70100","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Validated Stability-Indicating RP-HPLC Method for Nirmatrelvir in Self-Emulsifying Drug Delivery Systems: Formulation Characterization and Permeability Enhancement
This study presents a novel analytical and formulation strategy to enhance the oral delivery and quality assessment of Nirmatrelvir, a poorly water-soluble antiviral agent. A self-emulsifying drug delivery system (SEDDS) was developed using Labrafac MC 60, ethanol, and Transcutol HP (55:25:20), resulting in a nanoemulsion with a droplet size of 145.23 ± 3.23 nm, low polydispersity index (0.189 ± 0.023), and high transmittance (98.97 ± 0.25%). The formulation exhibited rapid emulsification (< 90 s) and significantly improved permeability, achieving a fivefold increase (Papp: 4.20 × 10−6 cm/s) across Caco-2 cell monolayers compared to the tablet formulation. A stability-indicating reverse-phase HPLC method was developed using a mobile phase of 5 mM potassium dihydrogen phosphate buffer (pH 4.0) and acetonitrile (40:60, v/v), and validated per ICH Q2(R1) guidelines. The method showed excellent linearity (R2 = 0.9999), accuracy (98.6%–100.2%), precision (%RSD < 0.3%), and robustness. An optimized sample preparation protocol ensured efficient extraction of Nirmatrelvir from the SEDDS matrix with minimal interference. Forced degradation studies under ICH Q1A(R2) demonstrated that Nirmatrelvir remained stable under oxidative (98.44%), thermal (98.45%), and photolytic (98.50%) conditions. Maximum degradation was observed under alkaline stress (20.56% at 0.5 N NaOH), followed by acidic stress (13.53% at 5 N HCl). The major alkaline degradant (Rt 2.7 min) was characterized by LC-TQ/MS (m/z 518.2 [M+H]⁺). The method's sustainability was supported by an AGREE score of 0.64 and a Whiteness score of 85.4, offering a validated platform for routine analysis of Nirmatrelvir in lipid-based formulations.
期刊介绍:
Archiv der Pharmazie - Chemistry in Life Sciences is an international journal devoted to research and development in all fields of pharmaceutical and medicinal chemistry. Emphasis is put on papers combining synthetic organic chemistry, structural biology, molecular modelling, bioorganic chemistry, natural products chemistry, biochemistry or analytical methods with pharmaceutical or medicinal aspects such as biological activity. The focus of this journal is put on original research papers, but other scientifically valuable contributions (e.g. reviews, minireviews, highlights, symposia contributions, discussions, and essays) are also welcome.