AI/ ml驱动的DPP-4抑制剂预测器(d4p_v1)用于增强2型糖尿病管理:对化学空间,指纹和静电电位图的见解

IF 3.6 3区 医学 Q2 CHEMISTRY, MEDICINAL
Anu Manhas, Ritam Dutta, Stefano Piotto, Sk. Abdul Amin
{"title":"AI/ ml驱动的DPP-4抑制剂预测器(d4p_v1)用于增强2型糖尿病管理:对化学空间,指纹和静电电位图的见解","authors":"Anu Manhas,&nbsp;Ritam Dutta,&nbsp;Stefano Piotto,&nbsp;Sk. Abdul Amin","doi":"10.1002/ardp.70106","DOIUrl":null,"url":null,"abstract":"<p>Dipeptidyl peptidase-4 inhibitors (DPP-4i) represent a relatively new class of oral antidiabetic drugs. This study focuses on: (a) identifying favourable and unfavourable fingerprints governing DPP-4 inhibition using fragment-based analysis, (b) validating key fingerprints through HOMO–LUMO gap analysis and electrostatic potential (ESP) maps, and (c) developing AI/ML-driven DPP-4 predictor, an online cheminformatics tool for efficient DPP-4i screening using a trained, validated AI/ML model. The fragment-based QSAR model finds key substructures linked to potent DPP-4 inhibition, including 2-cyanopyrrolidine, 3-amino tetrahydropyran, and difluoro phenyl groups. D0010 (3-aminotetrahydropyran fingerprint G10) is the most reactive, while D0094 (difluorophenyl fingerprint G14) is the most stable, with D0012 and D0013 (2-cyanopyrrolidine fingerprints G1, G5) offering a balance between stability and reactivity. In addition, the d4p_v1 tool (https://github.com/Amincheminfom/d4p_v1) reliably distinguishes active and inactive DPP-4i using molecular descriptors derived from input SMILES strings. Therefore, this study not only revealed the chemical space of DPP-4i but also opened up a horizon in developing novel potent DPP-4i for the management of type 2 diabetes mellitus (T2DM) in the future.</p>","PeriodicalId":128,"journal":{"name":"Archiv der Pharmazie","volume":"358 9","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ardp.70106","citationCount":"0","resultStr":"{\"title\":\"AI/ML-Driven DPP-4 Inhibitor Predictor (d4p_v1) for Enhanced Type 2 Diabetes Mellitus Management: Insights Into Chemical Space, Fingerprints, and Electrostatic Potential Maps\",\"authors\":\"Anu Manhas,&nbsp;Ritam Dutta,&nbsp;Stefano Piotto,&nbsp;Sk. Abdul Amin\",\"doi\":\"10.1002/ardp.70106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Dipeptidyl peptidase-4 inhibitors (DPP-4i) represent a relatively new class of oral antidiabetic drugs. This study focuses on: (a) identifying favourable and unfavourable fingerprints governing DPP-4 inhibition using fragment-based analysis, (b) validating key fingerprints through HOMO–LUMO gap analysis and electrostatic potential (ESP) maps, and (c) developing AI/ML-driven DPP-4 predictor, an online cheminformatics tool for efficient DPP-4i screening using a trained, validated AI/ML model. The fragment-based QSAR model finds key substructures linked to potent DPP-4 inhibition, including 2-cyanopyrrolidine, 3-amino tetrahydropyran, and difluoro phenyl groups. D0010 (3-aminotetrahydropyran fingerprint G10) is the most reactive, while D0094 (difluorophenyl fingerprint G14) is the most stable, with D0012 and D0013 (2-cyanopyrrolidine fingerprints G1, G5) offering a balance between stability and reactivity. In addition, the d4p_v1 tool (https://github.com/Amincheminfom/d4p_v1) reliably distinguishes active and inactive DPP-4i using molecular descriptors derived from input SMILES strings. Therefore, this study not only revealed the chemical space of DPP-4i but also opened up a horizon in developing novel potent DPP-4i for the management of type 2 diabetes mellitus (T2DM) in the future.</p>\",\"PeriodicalId\":128,\"journal\":{\"name\":\"Archiv der Pharmazie\",\"volume\":\"358 9\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ardp.70106\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Pharmazie\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ardp.70106\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Pharmazie","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ardp.70106","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

二肽基肽酶-4抑制剂(DPP-4i)是一类较新的口服降糖药。本研究的重点是:(a)使用基于片段的分析识别控制DPP-4抑制的有利和不利指纹,(b)通过HOMO-LUMO间隙分析和静电电位(ESP)图验证关键指纹,以及(c)开发人工智能/机器学习驱动的DPP-4预测器,这是一个在线化学信息学工具,用于使用训练过的、经过验证的人工智能/机器学习模型进行有效的DPP-4i筛选。基于片段的QSAR模型发现了与DPP-4有效抑制相关的关键亚结构,包括2-氰吡咯烷、3-氨基四氢吡喃和二氟苯基。D0010(3-氨基四氢吡喃指纹图谱G10)反应性最强,D0094(二氟苯基指纹图谱G14)最稳定,D0012和D0013(2-氰吡咯烷指纹图谱G1、G5)在稳定性和反应性之间取得了平衡。此外,d4p_v1工具(https://github.com/Amincheminfom/d4p_v1)使用从输入SMILES字符串派生的分子描述符可靠地区分活性和非活性DPP-4i。因此,本研究不仅揭示了DPP-4i的化学空间,也为未来开发新型有效治疗2型糖尿病(T2DM)的DPP-4i开辟了前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

AI/ML-Driven DPP-4 Inhibitor Predictor (d4p_v1) for Enhanced Type 2 Diabetes Mellitus Management: Insights Into Chemical Space, Fingerprints, and Electrostatic Potential Maps

AI/ML-Driven DPP-4 Inhibitor Predictor (d4p_v1) for Enhanced Type 2 Diabetes Mellitus Management: Insights Into Chemical Space, Fingerprints, and Electrostatic Potential Maps

Dipeptidyl peptidase-4 inhibitors (DPP-4i) represent a relatively new class of oral antidiabetic drugs. This study focuses on: (a) identifying favourable and unfavourable fingerprints governing DPP-4 inhibition using fragment-based analysis, (b) validating key fingerprints through HOMO–LUMO gap analysis and electrostatic potential (ESP) maps, and (c) developing AI/ML-driven DPP-4 predictor, an online cheminformatics tool for efficient DPP-4i screening using a trained, validated AI/ML model. The fragment-based QSAR model finds key substructures linked to potent DPP-4 inhibition, including 2-cyanopyrrolidine, 3-amino tetrahydropyran, and difluoro phenyl groups. D0010 (3-aminotetrahydropyran fingerprint G10) is the most reactive, while D0094 (difluorophenyl fingerprint G14) is the most stable, with D0012 and D0013 (2-cyanopyrrolidine fingerprints G1, G5) offering a balance between stability and reactivity. In addition, the d4p_v1 tool (https://github.com/Amincheminfom/d4p_v1) reliably distinguishes active and inactive DPP-4i using molecular descriptors derived from input SMILES strings. Therefore, this study not only revealed the chemical space of DPP-4i but also opened up a horizon in developing novel potent DPP-4i for the management of type 2 diabetes mellitus (T2DM) in the future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archiv der Pharmazie
Archiv der Pharmazie 医学-化学综合
CiteScore
7.90
自引率
5.90%
发文量
176
审稿时长
3.0 months
期刊介绍: Archiv der Pharmazie - Chemistry in Life Sciences is an international journal devoted to research and development in all fields of pharmaceutical and medicinal chemistry. Emphasis is put on papers combining synthetic organic chemistry, structural biology, molecular modelling, bioorganic chemistry, natural products chemistry, biochemistry or analytical methods with pharmaceutical or medicinal aspects such as biological activity. The focus of this journal is put on original research papers, but other scientifically valuable contributions (e.g. reviews, minireviews, highlights, symposia contributions, discussions, and essays) are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信