Damian J. Hernandez, Gwendolyn B. Pohlmann, Michelle E. Afkhami
{"title":"基因家族扩展提供了环境依赖物种相互作用所需的分子灵活性","authors":"Damian J. Hernandez, Gwendolyn B. Pohlmann, Michelle E. Afkhami","doi":"10.1111/ele.70213","DOIUrl":null,"url":null,"abstract":"<p>As environments worldwide change at unprecedented rates during the Anthropocene, understanding context dependency—how species interactions vary depending on environmental context—is crucial. Combining comparative genomics across 42 angiosperms with transcriptomics, genome-wide association mapping and gene duplication origin analyses, we show for the first time that gene family expansions are important to context-dependent regulation of species interactions. Gene families expanded in mycorrhizal fungi-associating plants display up to 200% more context-dependent gene expression and double the genetic variation associated with mycorrhizal benefits to plant fitness. Moreover, we discover these gene family expansions arise primarily from tandem duplications with > 2-times more tandem duplications genome-wide, indicating gene family expansions continuously supply genetic variation, allowing fine-tuning of context dependency in species interactions throughout plant evolution. Taken together, our results spotlight how widespread gene duplications can provide molecular flexibility required for plant–microbial interactions to match changing environmental conditions.</p>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"28 9","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.70213","citationCount":"0","resultStr":"{\"title\":\"Gene Family Expansions Provide Molecular Flexibility Required for Context-Dependent Species Interactions\",\"authors\":\"Damian J. Hernandez, Gwendolyn B. Pohlmann, Michelle E. Afkhami\",\"doi\":\"10.1111/ele.70213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As environments worldwide change at unprecedented rates during the Anthropocene, understanding context dependency—how species interactions vary depending on environmental context—is crucial. Combining comparative genomics across 42 angiosperms with transcriptomics, genome-wide association mapping and gene duplication origin analyses, we show for the first time that gene family expansions are important to context-dependent regulation of species interactions. Gene families expanded in mycorrhizal fungi-associating plants display up to 200% more context-dependent gene expression and double the genetic variation associated with mycorrhizal benefits to plant fitness. Moreover, we discover these gene family expansions arise primarily from tandem duplications with > 2-times more tandem duplications genome-wide, indicating gene family expansions continuously supply genetic variation, allowing fine-tuning of context dependency in species interactions throughout plant evolution. Taken together, our results spotlight how widespread gene duplications can provide molecular flexibility required for plant–microbial interactions to match changing environmental conditions.</p>\",\"PeriodicalId\":161,\"journal\":{\"name\":\"Ecology Letters\",\"volume\":\"28 9\",\"pages\":\"\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.70213\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecology Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ele.70213\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology Letters","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ele.70213","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Gene Family Expansions Provide Molecular Flexibility Required for Context-Dependent Species Interactions
As environments worldwide change at unprecedented rates during the Anthropocene, understanding context dependency—how species interactions vary depending on environmental context—is crucial. Combining comparative genomics across 42 angiosperms with transcriptomics, genome-wide association mapping and gene duplication origin analyses, we show for the first time that gene family expansions are important to context-dependent regulation of species interactions. Gene families expanded in mycorrhizal fungi-associating plants display up to 200% more context-dependent gene expression and double the genetic variation associated with mycorrhizal benefits to plant fitness. Moreover, we discover these gene family expansions arise primarily from tandem duplications with > 2-times more tandem duplications genome-wide, indicating gene family expansions continuously supply genetic variation, allowing fine-tuning of context dependency in species interactions throughout plant evolution. Taken together, our results spotlight how widespread gene duplications can provide molecular flexibility required for plant–microbial interactions to match changing environmental conditions.
期刊介绍:
Ecology Letters serves as a platform for the rapid publication of innovative research in ecology. It considers manuscripts across all taxa, biomes, and geographic regions, prioritizing papers that investigate clearly stated hypotheses. The journal publishes concise papers of high originality and general interest, contributing to new developments in ecology. Purely descriptive papers and those that only confirm or extend previous results are discouraged.