肺穿透仿生细胞外囊泡球形核酸通过清除活性氧和抗炎作用治疗肺纤维化

IF 13.7 Q1 CHEMISTRY, MULTIDISCIPLINARY
Saiyun Lou, Jiangpo Ma, Pan Fu, Lin Li, Jingyun Huang, Fangxue Jing, Yuhui Wang, Sihua Qian, Jianping Zheng, Jiang Li, Zhaoxing Dong, Kaizhe Wang
{"title":"肺穿透仿生细胞外囊泡球形核酸通过清除活性氧和抗炎作用治疗肺纤维化","authors":"Saiyun Lou,&nbsp;Jiangpo Ma,&nbsp;Pan Fu,&nbsp;Lin Li,&nbsp;Jingyun Huang,&nbsp;Fangxue Jing,&nbsp;Yuhui Wang,&nbsp;Sihua Qian,&nbsp;Jianping Zheng,&nbsp;Jiang Li,&nbsp;Zhaoxing Dong,&nbsp;Kaizhe Wang","doi":"10.1002/agt2.70086","DOIUrl":null,"url":null,"abstract":"<p>Idiopathic pulmonary fibrosis (IPF) is an irreversible and fatal lung disease characterized by persistent alveolar epithelial cell injury and extracellular matrix deposition. Early dual modulation of oxidative stress and inflammation may offer a promising therapeutic opportunity. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) offer therapeutic promise but face challenges in scalability and efficient lung delivery. Here, we developed a biomimetic extracellular vesicle-spherical nucleic acid (BEV-SNA) platform for IPF therapy. BEV-SNA were constructed by integrating mechanically extruded BEVs from primary MSCs with cholesterol-modified ssDNA through hydrophobic co-assembly. In stemness-maintained P0-P1 MSCs, the production of BEVs increased by 17.2-fold compared to natural EVs. Benefiting from a three-dimensionally dense and negatively charged DNA shell, BEV-SNA reduce airway adhesion, enabling deep pulmonary delivery and efficient cellular uptake. In IPF models, BEV-SNA demonstrated multiphase therapeutic effects, including protection of alveolar epithelial cells from ROS, anti-inflammatory activity, and late-stage anti-fibrotic action, effectively halting fibrosis progression and achieving a 50% survival rate in mice. This study presents a novel therapeutic platform combining the natural biomimicry of EVs with the functional adaptability of SNAs, proposing an innovative strategy for pulmonary drug delivery and the treatment of respiratory diseases.</p>","PeriodicalId":72127,"journal":{"name":"Aggregate (Hoboken, N.J.)","volume":"6 9","pages":""},"PeriodicalIF":13.7000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agt2.70086","citationCount":"0","resultStr":"{\"title\":\"Lung-Penetrating Biomimetic Extracellular Vesicle Spherical Nucleic Acids for Pulmonary Fibrosis Therapy Through ROS Scavenging and Anti-Inflammatory Effects\",\"authors\":\"Saiyun Lou,&nbsp;Jiangpo Ma,&nbsp;Pan Fu,&nbsp;Lin Li,&nbsp;Jingyun Huang,&nbsp;Fangxue Jing,&nbsp;Yuhui Wang,&nbsp;Sihua Qian,&nbsp;Jianping Zheng,&nbsp;Jiang Li,&nbsp;Zhaoxing Dong,&nbsp;Kaizhe Wang\",\"doi\":\"10.1002/agt2.70086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Idiopathic pulmonary fibrosis (IPF) is an irreversible and fatal lung disease characterized by persistent alveolar epithelial cell injury and extracellular matrix deposition. Early dual modulation of oxidative stress and inflammation may offer a promising therapeutic opportunity. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) offer therapeutic promise but face challenges in scalability and efficient lung delivery. Here, we developed a biomimetic extracellular vesicle-spherical nucleic acid (BEV-SNA) platform for IPF therapy. BEV-SNA were constructed by integrating mechanically extruded BEVs from primary MSCs with cholesterol-modified ssDNA through hydrophobic co-assembly. In stemness-maintained P0-P1 MSCs, the production of BEVs increased by 17.2-fold compared to natural EVs. Benefiting from a three-dimensionally dense and negatively charged DNA shell, BEV-SNA reduce airway adhesion, enabling deep pulmonary delivery and efficient cellular uptake. In IPF models, BEV-SNA demonstrated multiphase therapeutic effects, including protection of alveolar epithelial cells from ROS, anti-inflammatory activity, and late-stage anti-fibrotic action, effectively halting fibrosis progression and achieving a 50% survival rate in mice. This study presents a novel therapeutic platform combining the natural biomimicry of EVs with the functional adaptability of SNAs, proposing an innovative strategy for pulmonary drug delivery and the treatment of respiratory diseases.</p>\",\"PeriodicalId\":72127,\"journal\":{\"name\":\"Aggregate (Hoboken, N.J.)\",\"volume\":\"6 9\",\"pages\":\"\"},\"PeriodicalIF\":13.7000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agt2.70086\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aggregate (Hoboken, N.J.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/agt2.70086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aggregate (Hoboken, N.J.)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/agt2.70086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

特发性肺纤维化(IPF)是一种以持续肺泡上皮细胞损伤和细胞外基质沉积为特征的不可逆、致死性肺部疾病。氧化应激和炎症的早期双重调节可能提供一个有希望的治疗机会。间充质干细胞衍生的细胞外囊泡(msc - ev)具有治疗前景,但在可扩展性和高效肺输送方面面临挑战。在这里,我们开发了一个用于IPF治疗的仿生细胞外囊泡-球形核酸(BEV-SNA)平台。BEV-SNA是通过疏水共组装将原代MSCs机械挤出的bev与胆固醇修饰的ssDNA整合在一起构建的。在干细胞维持的P0-P1间充质干细胞中,bev的产量比天然ev增加了17.2倍。受益于三维致密和带负电荷的DNA外壳,BEV-SNA减少气道粘连,实现深肺输送和有效的细胞摄取。在IPF模型中,BEV-SNA显示出多相治疗作用,包括保护肺泡上皮细胞免受活性氧的侵害、抗炎活性和晚期抗纤维化作用,有效阻止纤维化进展,并在小鼠中实现50%的存活率。本研究提出了一种将ev的天然仿生学与sna的功能适应性相结合的新型治疗平台,为肺部药物输送和呼吸系统疾病的治疗提供了一种创新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Lung-Penetrating Biomimetic Extracellular Vesicle Spherical Nucleic Acids for Pulmonary Fibrosis Therapy Through ROS Scavenging and Anti-Inflammatory Effects

Lung-Penetrating Biomimetic Extracellular Vesicle Spherical Nucleic Acids for Pulmonary Fibrosis Therapy Through ROS Scavenging and Anti-Inflammatory Effects

Idiopathic pulmonary fibrosis (IPF) is an irreversible and fatal lung disease characterized by persistent alveolar epithelial cell injury and extracellular matrix deposition. Early dual modulation of oxidative stress and inflammation may offer a promising therapeutic opportunity. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) offer therapeutic promise but face challenges in scalability and efficient lung delivery. Here, we developed a biomimetic extracellular vesicle-spherical nucleic acid (BEV-SNA) platform for IPF therapy. BEV-SNA were constructed by integrating mechanically extruded BEVs from primary MSCs with cholesterol-modified ssDNA through hydrophobic co-assembly. In stemness-maintained P0-P1 MSCs, the production of BEVs increased by 17.2-fold compared to natural EVs. Benefiting from a three-dimensionally dense and negatively charged DNA shell, BEV-SNA reduce airway adhesion, enabling deep pulmonary delivery and efficient cellular uptake. In IPF models, BEV-SNA demonstrated multiphase therapeutic effects, including protection of alveolar epithelial cells from ROS, anti-inflammatory activity, and late-stage anti-fibrotic action, effectively halting fibrosis progression and achieving a 50% survival rate in mice. This study presents a novel therapeutic platform combining the natural biomimicry of EVs with the functional adaptability of SNAs, proposing an innovative strategy for pulmonary drug delivery and the treatment of respiratory diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.40
自引率
0.00%
发文量
0
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信