无铅和遗留压电双晶片悬臂梁在物联网和可穿戴系统中低功耗能量清除的计算预测和效率提高

IF 3.6 4区 工程技术 Q3 ENERGY & FUELS
Ravi Ranjan Kumar, Deepak Punetha
{"title":"无铅和遗留压电双晶片悬臂梁在物联网和可穿戴系统中低功耗能量清除的计算预测和效率提高","authors":"Ravi Ranjan Kumar,&nbsp;Deepak Punetha","doi":"10.1002/ente.202402193","DOIUrl":null,"url":null,"abstract":"<p>This study presents a simulation analysis of bimorph cantilever energy harvesters using both lead-free and conventional piezoelectric materials, focusing on their efficiency for low-power electromechanical transduction in IoT and wearable systems. The materials examined include lead-free zinc oxide (ZnO), aluminum nitride (AlN), barium titanate (BaTiO<sub>3</sub>), and lithium niobate (LiNbO<sub>3</sub>), alongside conventional piezoelectric materials such as lead zirconate titanate (PZT5A), Pz21, polyvinylidene fluoride (PVDF), and cadmium sulfide (CdS). Advanced simulations evaluate key performance parameters such as operational resonance frequency, load resistance optimization, and W-plate configurations, assessing their influence on energy conversion efficiency. Among the lead-free materials, BaTiO<sub>3</sub> demonstrates the highest performance, achieving 0.18579 V, 1.61 μW mechanical power, and 1.44 μW electrical power at 80 Hz. In comparison, the conventional material PZT5A peaks at 71 Hz with 5.295 V, 1183.11 μW mechanical power, and 1168.21 μW electrical power. Under high acceleration (2 g), Pz21 shows superior output, delivering 9.22066 V and 3542.52 μW electrical power. BaTiO<sub>3</sub> exhibits optimal performance at a load resistance of 100 kΩ, generating 0.91977 V and 4.23 μW electrical power. These findings emphasize the critical role of material selection and design optimization in enhancing power harvesting efficiency, offering sustainable solutions for powering IoT devices and wearable electronics.</p>","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":"13 9","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational Prognosis and Efficiency Augmentation of Lead-Free and Legacy Piezoelectric Bimorph Cantilevers for Low-Power Energy Scavenging in IoT and Wearable Systems\",\"authors\":\"Ravi Ranjan Kumar,&nbsp;Deepak Punetha\",\"doi\":\"10.1002/ente.202402193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study presents a simulation analysis of bimorph cantilever energy harvesters using both lead-free and conventional piezoelectric materials, focusing on their efficiency for low-power electromechanical transduction in IoT and wearable systems. The materials examined include lead-free zinc oxide (ZnO), aluminum nitride (AlN), barium titanate (BaTiO<sub>3</sub>), and lithium niobate (LiNbO<sub>3</sub>), alongside conventional piezoelectric materials such as lead zirconate titanate (PZT5A), Pz21, polyvinylidene fluoride (PVDF), and cadmium sulfide (CdS). Advanced simulations evaluate key performance parameters such as operational resonance frequency, load resistance optimization, and W-plate configurations, assessing their influence on energy conversion efficiency. Among the lead-free materials, BaTiO<sub>3</sub> demonstrates the highest performance, achieving 0.18579 V, 1.61 μW mechanical power, and 1.44 μW electrical power at 80 Hz. In comparison, the conventional material PZT5A peaks at 71 Hz with 5.295 V, 1183.11 μW mechanical power, and 1168.21 μW electrical power. Under high acceleration (2 g), Pz21 shows superior output, delivering 9.22066 V and 3542.52 μW electrical power. BaTiO<sub>3</sub> exhibits optimal performance at a load resistance of 100 kΩ, generating 0.91977 V and 4.23 μW electrical power. These findings emphasize the critical role of material selection and design optimization in enhancing power harvesting efficiency, offering sustainable solutions for powering IoT devices and wearable electronics.</p>\",\"PeriodicalId\":11573,\"journal\":{\"name\":\"Energy technology\",\"volume\":\"13 9\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ente.202402193\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ente.202402193","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本研究对使用无铅和传统压电材料的双晶片悬臂式能量采集器进行了仿真分析,重点研究了它们在物联网和可穿戴系统中的低功耗机电转导效率。测试的材料包括无铅氧化锌(ZnO)、氮化铝(AlN)、钛酸钡(BaTiO3)和铌酸锂(LiNbO3),以及传统的压电材料,如钛酸锆铅(PZT5A)、Pz21、聚偏氟乙烯(PVDF)和硫化镉(cd)。先进的模拟评估关键性能参数,如工作谐振频率、负载阻力优化和w型板配置,评估它们对能量转换效率的影响。在无铅材料中,BaTiO3表现出最高的性能,在80 Hz时可获得0.18579 V, 1.61 μW的机械功率和1.44 μW的电功率。相比之下,传统材料PZT5A在5.295 V、1183.11 μW、1168.21 μW的条件下,峰值在71 Hz。在高加速度(2g)下,Pz21具有优异的输出,输出功率为9.22066 V, 3542.52 μW。BaTiO3在负载电阻为100 kΩ时表现出最佳性能,可产生0.91977 V和4.23 μW的电功率。这些发现强调了材料选择和设计优化在提高能量收集效率方面的关键作用,为物联网设备和可穿戴电子产品提供可持续的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Computational Prognosis and Efficiency Augmentation of Lead-Free and Legacy Piezoelectric Bimorph Cantilevers for Low-Power Energy Scavenging in IoT and Wearable Systems

Computational Prognosis and Efficiency Augmentation of Lead-Free and Legacy Piezoelectric Bimorph Cantilevers for Low-Power Energy Scavenging in IoT and Wearable Systems

This study presents a simulation analysis of bimorph cantilever energy harvesters using both lead-free and conventional piezoelectric materials, focusing on their efficiency for low-power electromechanical transduction in IoT and wearable systems. The materials examined include lead-free zinc oxide (ZnO), aluminum nitride (AlN), barium titanate (BaTiO3), and lithium niobate (LiNbO3), alongside conventional piezoelectric materials such as lead zirconate titanate (PZT5A), Pz21, polyvinylidene fluoride (PVDF), and cadmium sulfide (CdS). Advanced simulations evaluate key performance parameters such as operational resonance frequency, load resistance optimization, and W-plate configurations, assessing their influence on energy conversion efficiency. Among the lead-free materials, BaTiO3 demonstrates the highest performance, achieving 0.18579 V, 1.61 μW mechanical power, and 1.44 μW electrical power at 80 Hz. In comparison, the conventional material PZT5A peaks at 71 Hz with 5.295 V, 1183.11 μW mechanical power, and 1168.21 μW electrical power. Under high acceleration (2 g), Pz21 shows superior output, delivering 9.22066 V and 3542.52 μW electrical power. BaTiO3 exhibits optimal performance at a load resistance of 100 kΩ, generating 0.91977 V and 4.23 μW electrical power. These findings emphasize the critical role of material selection and design optimization in enhancing power harvesting efficiency, offering sustainable solutions for powering IoT devices and wearable electronics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy technology
Energy technology ENERGY & FUELS-
CiteScore
7.00
自引率
5.30%
发文量
0
审稿时长
1.3 months
期刊介绍: Energy Technology provides a forum for researchers and engineers from all relevant disciplines concerned with the generation, conversion, storage, and distribution of energy. This new journal shall publish articles covering all technical aspects of energy process engineering from different perspectives, e.g., new concepts of energy generation and conversion; design, operation, control, and optimization of processes for energy generation (e.g., carbon capture) and conversion of energy carriers; improvement of existing processes; combination of single components to systems for energy generation; design of systems for energy storage; production processes of fuels, e.g., hydrogen, electricity, petroleum, biobased fuels; concepts and design of devices for energy distribution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信