用于储能应用的钠离子导电藻酸盐基电解质材料

IF 3.6 4区 工程技术 Q3 ENERGY & FUELS
Shashikant Yadav, Dipendra Kumar Verma, Rudramani Tiwari, Devendra Kumar, Km Parwati, Rajshree Rai, Pubali Adhikary, Subramanian Krishnamoorthi
{"title":"用于储能应用的钠离子导电藻酸盐基电解质材料","authors":"Shashikant Yadav,&nbsp;Dipendra Kumar Verma,&nbsp;Rudramani Tiwari,&nbsp;Devendra Kumar,&nbsp;Km Parwati,&nbsp;Rajshree Rai,&nbsp;Pubali Adhikary,&nbsp;Subramanian Krishnamoorthi","doi":"10.1002/ente.202401912","DOIUrl":null,"url":null,"abstract":"<p>\nA green pseudosolid polymer electrolyte is prepared using sodium alginate and sodium polyphosphate via a sustainable solution-cast method with water as the medium. The amorphous anionic polymer backbone enables easy cationic movement, enhancing ionic conductivity. This water-in-salt electrolyte exhibits an electrochemical stability window of 3.2 V and a cationic transport number of 0.90%. Thermal analysis confirms stability up to 150 °C, making it suitable for high-temperature applications. X-ray diffraction analysis verifies its amorphous nature, facilitating smooth ion transport, while scanning electron microscopy reveals a smooth morphology with well-defined pores, improving electrode interface stability. At room temperature, the electrolyte displays electrical conductivity around 10<sup>−5</sup> S cm<sup>−1</sup>, increasing to 10<sup>−4</sup> S cm<sup>−1</sup> above 40 °C. The drift ionic velocity is ≈10<sup>−5 </sup>m s<sup>−1</sup>, with ionic mobility of 10<sup>−7</sup> mV s<sup>−1</sup>. Cage-type hopping dominates ionic movement, requiring a low activation energy of 0.158 eV. Incorporating an ionic liquid as a plasticizer further enhances conductivity to 10<sup>−3 </sup>S cm<sup>−1</sup>. Additionally, the material exhibits dielectric relaxation due to polar group orientation. Its high capacitance with minimal electrode contribution makes it a promising candidate for energy storage applications, offering excellent electrochemical and thermal stability, along with superior electrode–electrolyte interface properties.</p>","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":"13 9","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sodium-Ion-Conducting Alginate-Based Electrolyte Material for Energy Storage Applications\",\"authors\":\"Shashikant Yadav,&nbsp;Dipendra Kumar Verma,&nbsp;Rudramani Tiwari,&nbsp;Devendra Kumar,&nbsp;Km Parwati,&nbsp;Rajshree Rai,&nbsp;Pubali Adhikary,&nbsp;Subramanian Krishnamoorthi\",\"doi\":\"10.1002/ente.202401912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>\\nA green pseudosolid polymer electrolyte is prepared using sodium alginate and sodium polyphosphate via a sustainable solution-cast method with water as the medium. The amorphous anionic polymer backbone enables easy cationic movement, enhancing ionic conductivity. This water-in-salt electrolyte exhibits an electrochemical stability window of 3.2 V and a cationic transport number of 0.90%. Thermal analysis confirms stability up to 150 °C, making it suitable for high-temperature applications. X-ray diffraction analysis verifies its amorphous nature, facilitating smooth ion transport, while scanning electron microscopy reveals a smooth morphology with well-defined pores, improving electrode interface stability. At room temperature, the electrolyte displays electrical conductivity around 10<sup>−5</sup> S cm<sup>−1</sup>, increasing to 10<sup>−4</sup> S cm<sup>−1</sup> above 40 °C. The drift ionic velocity is ≈10<sup>−5 </sup>m s<sup>−1</sup>, with ionic mobility of 10<sup>−7</sup> mV s<sup>−1</sup>. Cage-type hopping dominates ionic movement, requiring a low activation energy of 0.158 eV. Incorporating an ionic liquid as a plasticizer further enhances conductivity to 10<sup>−3 </sup>S cm<sup>−1</sup>. Additionally, the material exhibits dielectric relaxation due to polar group orientation. Its high capacitance with minimal electrode contribution makes it a promising candidate for energy storage applications, offering excellent electrochemical and thermal stability, along with superior electrode–electrolyte interface properties.</p>\",\"PeriodicalId\":11573,\"journal\":{\"name\":\"Energy technology\",\"volume\":\"13 9\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ente.202401912\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ente.202401912","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

以海藻酸钠和聚磷酸钠为原料,以水为介质,采用持续溶液铸法制备了绿色假固体聚合物电解质。无定形阴离子聚合物骨架使阳离子运动容易,增强离子导电性。该盐包水电解质的电化学稳定窗口为3.2 V,阳离子输运数为0.90%。热分析证实高达150°C的稳定性,使其适合高温应用。x射线衍射分析证实了其无定形性质,促进了离子的顺利传输,而扫描电镜显示其光滑的形貌,具有良好的孔隙,提高了电极界面的稳定性。在室温下,电解质的导电性在10−5 S cm−1左右,在40℃以上增加到10−4 S cm−1。离子漂移速度为≈10−5 m s−1,离子迁移率为10−7 mV s−1。笼型跳变主导离子运动,需要0.158 eV的低活化能。加入离子液体作为增塑剂进一步将电导率提高到10−3 S cm−1。此外,由于极性基团取向,材料表现出介电弛豫。它的高电容和最小的电极贡献使其成为储能应用的有希望的候选者,具有优异的电化学和热稳定性,以及优越的电极-电解质界面特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Sodium-Ion-Conducting Alginate-Based Electrolyte Material for Energy Storage Applications

Sodium-Ion-Conducting Alginate-Based Electrolyte Material for Energy Storage Applications

A green pseudosolid polymer electrolyte is prepared using sodium alginate and sodium polyphosphate via a sustainable solution-cast method with water as the medium. The amorphous anionic polymer backbone enables easy cationic movement, enhancing ionic conductivity. This water-in-salt electrolyte exhibits an electrochemical stability window of 3.2 V and a cationic transport number of 0.90%. Thermal analysis confirms stability up to 150 °C, making it suitable for high-temperature applications. X-ray diffraction analysis verifies its amorphous nature, facilitating smooth ion transport, while scanning electron microscopy reveals a smooth morphology with well-defined pores, improving electrode interface stability. At room temperature, the electrolyte displays electrical conductivity around 10−5 S cm−1, increasing to 10−4 S cm−1 above 40 °C. The drift ionic velocity is ≈10−5 m s−1, with ionic mobility of 10−7 mV s−1. Cage-type hopping dominates ionic movement, requiring a low activation energy of 0.158 eV. Incorporating an ionic liquid as a plasticizer further enhances conductivity to 10−3 S cm−1. Additionally, the material exhibits dielectric relaxation due to polar group orientation. Its high capacitance with minimal electrode contribution makes it a promising candidate for energy storage applications, offering excellent electrochemical and thermal stability, along with superior electrode–electrolyte interface properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy technology
Energy technology ENERGY & FUELS-
CiteScore
7.00
自引率
5.30%
发文量
0
审稿时长
1.3 months
期刊介绍: Energy Technology provides a forum for researchers and engineers from all relevant disciplines concerned with the generation, conversion, storage, and distribution of energy. This new journal shall publish articles covering all technical aspects of energy process engineering from different perspectives, e.g., new concepts of energy generation and conversion; design, operation, control, and optimization of processes for energy generation (e.g., carbon capture) and conversion of energy carriers; improvement of existing processes; combination of single components to systems for energy generation; design of systems for energy storage; production processes of fuels, e.g., hydrogen, electricity, petroleum, biobased fuels; concepts and design of devices for energy distribution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信