流域尺度森林覆盖的系统评价:基于自然的解决方案

IF 3 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Prabhasri Herath, Barry Croke, Roslyn Prinsley, Jai Vaze, Carmel Pollino
{"title":"流域尺度森林覆盖的系统评价:基于自然的解决方案","authors":"Prabhasri Herath,&nbsp;Barry Croke,&nbsp;Roslyn Prinsley,&nbsp;Jai Vaze,&nbsp;Carmel Pollino","doi":"10.1111/jfr3.70125","DOIUrl":null,"url":null,"abstract":"<p>Forest cover within catchments is a widely adopted Nature-based Solution (NbS) for flood mitigation, offering hydrological benefits such as rainfall interception, enhanced infiltration, and reduced overland flow. Despite its recognized potential, quantitative reviews remain limited, especially at the catchment scale, with effectiveness varying by spatial scale, forest type, and climate. This review synthesizes 50 international case studies involving forest-based NbS, selected through structured screening based on intervention type, catchment characteristics, and availability of quantitative flood metrics, and presents a detailed bibliometric and content analysis. Forest cover consistently impacts peak flow across catchments of all sizes, with a generalized linear relationship where the effect magnitude is approximately half the forest cover change. For example, a 20% increase in forest cover tends to reduce peak flow by 10% across small, medium, and large catchments. Across a range of catchment sizes, there are only minor differences in the mean peak flow reductions for different event intensities (up to 1% AEP). An asymmetric hydrological response is evident: deforestation consistently increases peak flows, whereas afforestation yields gradual reductions, which are shaped by forest maturity, spatial distribution, and modeling assumptions. Upstream distributed forest placements offer distinct hydrological benefits. These outcomes highlight the importance of conserving mature forests, preventing deforestation, and optimizing forest placement, while acknowledging potential adverse impacts on water availability during dry periods.</p>","PeriodicalId":49294,"journal":{"name":"Journal of Flood Risk Management","volume":"18 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jfr3.70125","citationCount":"0","resultStr":"{\"title\":\"A Systematic Review of Forest Cover for Catchment-Scale Flood Mitigation: A Nature-Based Solution\",\"authors\":\"Prabhasri Herath,&nbsp;Barry Croke,&nbsp;Roslyn Prinsley,&nbsp;Jai Vaze,&nbsp;Carmel Pollino\",\"doi\":\"10.1111/jfr3.70125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Forest cover within catchments is a widely adopted Nature-based Solution (NbS) for flood mitigation, offering hydrological benefits such as rainfall interception, enhanced infiltration, and reduced overland flow. Despite its recognized potential, quantitative reviews remain limited, especially at the catchment scale, with effectiveness varying by spatial scale, forest type, and climate. This review synthesizes 50 international case studies involving forest-based NbS, selected through structured screening based on intervention type, catchment characteristics, and availability of quantitative flood metrics, and presents a detailed bibliometric and content analysis. Forest cover consistently impacts peak flow across catchments of all sizes, with a generalized linear relationship where the effect magnitude is approximately half the forest cover change. For example, a 20% increase in forest cover tends to reduce peak flow by 10% across small, medium, and large catchments. Across a range of catchment sizes, there are only minor differences in the mean peak flow reductions for different event intensities (up to 1% AEP). An asymmetric hydrological response is evident: deforestation consistently increases peak flows, whereas afforestation yields gradual reductions, which are shaped by forest maturity, spatial distribution, and modeling assumptions. Upstream distributed forest placements offer distinct hydrological benefits. These outcomes highlight the importance of conserving mature forests, preventing deforestation, and optimizing forest placement, while acknowledging potential adverse impacts on water availability during dry periods.</p>\",\"PeriodicalId\":49294,\"journal\":{\"name\":\"Journal of Flood Risk Management\",\"volume\":\"18 3\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jfr3.70125\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Flood Risk Management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jfr3.70125\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Flood Risk Management","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jfr3.70125","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

集水区内的森林覆盖是一种广泛采用的基于自然的缓解洪水的解决方案(NbS),它提供了诸如降雨拦截、增强入渗和减少陆地流量等水文效益。尽管认识到其潜力,但定量审查仍然有限,特别是在集水区尺度上,其有效性因空间尺度、森林类型和气候而异。本综述综合了50个涉及森林国家统计局的国际案例研究,这些研究是通过基于干预类型、流域特征和定量洪水指标的可用性的结构化筛选选出的,并提供了详细的文献计量学和内容分析。森林覆盖持续影响所有大小流域的峰值流量,具有广义线性关系,其影响幅度约为森林覆盖变化的一半。例如,森林覆盖率增加20%往往会使小、中、大流域的峰值流量减少10%。在一系列集水区大小中,不同事件强度的平均峰值流量减少只有微小差异(高达1% AEP)。不对称的水文响应是明显的:森林砍伐持续增加峰值流量,而造林则逐渐减少,这是由森林成熟度、空间分布和建模假设决定的。上游分布的森林位置提供了独特的水文效益。这些结果强调了保护成熟森林、防止森林砍伐和优化森林布局的重要性,同时承认了对干旱期水资源供应的潜在不利影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Systematic Review of Forest Cover for Catchment-Scale Flood Mitigation: A Nature-Based Solution

A Systematic Review of Forest Cover for Catchment-Scale Flood Mitigation: A Nature-Based Solution

Forest cover within catchments is a widely adopted Nature-based Solution (NbS) for flood mitigation, offering hydrological benefits such as rainfall interception, enhanced infiltration, and reduced overland flow. Despite its recognized potential, quantitative reviews remain limited, especially at the catchment scale, with effectiveness varying by spatial scale, forest type, and climate. This review synthesizes 50 international case studies involving forest-based NbS, selected through structured screening based on intervention type, catchment characteristics, and availability of quantitative flood metrics, and presents a detailed bibliometric and content analysis. Forest cover consistently impacts peak flow across catchments of all sizes, with a generalized linear relationship where the effect magnitude is approximately half the forest cover change. For example, a 20% increase in forest cover tends to reduce peak flow by 10% across small, medium, and large catchments. Across a range of catchment sizes, there are only minor differences in the mean peak flow reductions for different event intensities (up to 1% AEP). An asymmetric hydrological response is evident: deforestation consistently increases peak flows, whereas afforestation yields gradual reductions, which are shaped by forest maturity, spatial distribution, and modeling assumptions. Upstream distributed forest placements offer distinct hydrological benefits. These outcomes highlight the importance of conserving mature forests, preventing deforestation, and optimizing forest placement, while acknowledging potential adverse impacts on water availability during dry periods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Flood Risk Management
Journal of Flood Risk Management ENVIRONMENTAL SCIENCES-WATER RESOURCES
CiteScore
8.40
自引率
7.30%
发文量
93
审稿时长
12 months
期刊介绍: Journal of Flood Risk Management provides an international platform for knowledge sharing in all areas related to flood risk. Its explicit aim is to disseminate ideas across the range of disciplines where flood related research is carried out and it provides content ranging from leading edge academic papers to applied content with the practitioner in mind. Readers and authors come from a wide background and include hydrologists, meteorologists, geographers, geomorphologists, conservationists, civil engineers, social scientists, policy makers, insurers and practitioners. They share an interest in managing the complex interactions between the many skills and disciplines that underpin the management of flood risk across the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信