Yifan Su, Athanasios I. Tsirikos, Vasileios Koutsos, Pankaj Pankaj
{"title":"一种用于临床应用的新型通用有限元脊柱模型的开发和评估","authors":"Yifan Su, Athanasios I. Tsirikos, Vasileios Koutsos, Pankaj Pankaj","doi":"10.1002/cnm.70098","DOIUrl":null,"url":null,"abstract":"<p>Numerical modeling has been extensively employed to understand the biomechanics of the spine. Often, patient-specific models developed from medical scans, which are specific to an individual and their particular clinical case, are used. The aim of this study was to develop a generic model of the full adolescent spine, which includes ribs, muscles, and ligaments, that can effectively simulate realistic spinal biomechanics. The model was developed using computer-aided design, incorporating anatomical parameters to represent a 15-year-old adolescent full-spine geometry. Essential components like the ribcage and related musculature were included to capture realistic biomechanics. The model appraisal involved mesh sensitivity analysis and tests on selected functional spinal units (FSUs) in each spinal region to assess the biomechanics of specific components of the full spine. Biomechanical responses, including range of motion, intradiscal pressure, and facet joint forces, were evaluated across multiple simulated loading tasks. Results were compared to previous in vitro and in silico studies. Our model demonstrated good agreement with previous experimental and numerical studies. The ribcage inclusion simulated the stiffening effect observed in vivo satisfactorily. Ligamentous effect tests on thoracic and lumbar FSUs indicated that the model satisfactorily replicated expected biomechanical responses. The study shows that the developed model can be employed effectively to simulate real-life spine motions. The developed model will be used for future AIS research, enabling the investigation of surgical treatment outcomes across diverse clinical scenarios.</p>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":"41 9","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnm.70098","citationCount":"0","resultStr":"{\"title\":\"Development and Assessment of a Novel Generic Finite Element Spine Model for Clinical Applications\",\"authors\":\"Yifan Su, Athanasios I. Tsirikos, Vasileios Koutsos, Pankaj Pankaj\",\"doi\":\"10.1002/cnm.70098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Numerical modeling has been extensively employed to understand the biomechanics of the spine. Often, patient-specific models developed from medical scans, which are specific to an individual and their particular clinical case, are used. The aim of this study was to develop a generic model of the full adolescent spine, which includes ribs, muscles, and ligaments, that can effectively simulate realistic spinal biomechanics. The model was developed using computer-aided design, incorporating anatomical parameters to represent a 15-year-old adolescent full-spine geometry. Essential components like the ribcage and related musculature were included to capture realistic biomechanics. The model appraisal involved mesh sensitivity analysis and tests on selected functional spinal units (FSUs) in each spinal region to assess the biomechanics of specific components of the full spine. Biomechanical responses, including range of motion, intradiscal pressure, and facet joint forces, were evaluated across multiple simulated loading tasks. Results were compared to previous in vitro and in silico studies. Our model demonstrated good agreement with previous experimental and numerical studies. The ribcage inclusion simulated the stiffening effect observed in vivo satisfactorily. Ligamentous effect tests on thoracic and lumbar FSUs indicated that the model satisfactorily replicated expected biomechanical responses. The study shows that the developed model can be employed effectively to simulate real-life spine motions. The developed model will be used for future AIS research, enabling the investigation of surgical treatment outcomes across diverse clinical scenarios.</p>\",\"PeriodicalId\":50349,\"journal\":{\"name\":\"International Journal for Numerical Methods in Biomedical Engineering\",\"volume\":\"41 9\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnm.70098\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cnm.70098\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnm.70098","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Development and Assessment of a Novel Generic Finite Element Spine Model for Clinical Applications
Numerical modeling has been extensively employed to understand the biomechanics of the spine. Often, patient-specific models developed from medical scans, which are specific to an individual and their particular clinical case, are used. The aim of this study was to develop a generic model of the full adolescent spine, which includes ribs, muscles, and ligaments, that can effectively simulate realistic spinal biomechanics. The model was developed using computer-aided design, incorporating anatomical parameters to represent a 15-year-old adolescent full-spine geometry. Essential components like the ribcage and related musculature were included to capture realistic biomechanics. The model appraisal involved mesh sensitivity analysis and tests on selected functional spinal units (FSUs) in each spinal region to assess the biomechanics of specific components of the full spine. Biomechanical responses, including range of motion, intradiscal pressure, and facet joint forces, were evaluated across multiple simulated loading tasks. Results were compared to previous in vitro and in silico studies. Our model demonstrated good agreement with previous experimental and numerical studies. The ribcage inclusion simulated the stiffening effect observed in vivo satisfactorily. Ligamentous effect tests on thoracic and lumbar FSUs indicated that the model satisfactorily replicated expected biomechanical responses. The study shows that the developed model can be employed effectively to simulate real-life spine motions. The developed model will be used for future AIS research, enabling the investigation of surgical treatment outcomes across diverse clinical scenarios.
期刊介绍:
All differential equation based models for biomedical applications and their novel solutions (using either established numerical methods such as finite difference, finite element and finite volume methods or new numerical methods) are within the scope of this journal. Manuscripts with experimental and analytical themes are also welcome if a component of the paper deals with numerical methods. Special cases that may not involve differential equations such as image processing, meshing and artificial intelligence are within the scope. Any research that is broadly linked to the wellbeing of the human body, either directly or indirectly, is also within the scope of this journal.