高比能非对称超级电容器中多孔碳与吸附离子的匹配

IF 3.6 4区 工程技术 Q3 ENERGY & FUELS
Pan Liu, Peng Zhang, Zhenlei Chen, Xingda Wang, Qingyin Zhang, Zhiqiang Shi, Yongnan Zhao
{"title":"高比能非对称超级电容器中多孔碳与吸附离子的匹配","authors":"Pan Liu,&nbsp;Peng Zhang,&nbsp;Zhenlei Chen,&nbsp;Xingda Wang,&nbsp;Qingyin Zhang,&nbsp;Zhiqiang Shi,&nbsp;Yongnan Zhao","doi":"10.1002/ente.202402028","DOIUrl":null,"url":null,"abstract":"<p>In order to improve the energy density and stable operating voltage of the supercapacitor, asymmetric supercapacitors (ASCs) are designed utilizing mesoporous carbon (MC) as the anode, activated carbon (AC) as the cathode, and 1 mol kg<sup>−1</sup> (1 <span>m</span>) tetraethylammonium tetrafluoroborate/propylene carbonate (TEA-BF<sub>4</sub>/PC) as the electrolyte. In ASCs, the MC anode provides broad ion transport channels and significant charge storage capacity for TEA<sup>+</sup>, while the AC cathode, with its large specific surface area, offers numerous adsorption sites for BF<sub>4</sub><sup>−</sup>. Benefiting from the different porous materials matched with adsorbed ions, ASCs significantly enhance the rate performance and high-voltage stability of the device. Electrochemical testing demonstrates that the AC//MC ASCs exhibit an outstanding discharge capacitance of 121 F g<sup>−1</sup> at a current density of 0.1 A g<sup>−1</sup> at 3.2 V, which is sustained at about 65% at 10 A g<sup>−1</sup>. Additionally, the device achieves a remarkable energy density of 43.3 Wh kg<sup>−1</sup> and largest power density of 7.3 kW kg<sup>−1</sup>. This work provides theoretical direction for the design of electrode materials and process optimization in high-specific-energy double-layer capacitors.</p>","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":"13 9","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Matching of Porous Carbon and Adsorbed Ions for High-Specific-Energy Asymmetric Supercapacitors\",\"authors\":\"Pan Liu,&nbsp;Peng Zhang,&nbsp;Zhenlei Chen,&nbsp;Xingda Wang,&nbsp;Qingyin Zhang,&nbsp;Zhiqiang Shi,&nbsp;Yongnan Zhao\",\"doi\":\"10.1002/ente.202402028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In order to improve the energy density and stable operating voltage of the supercapacitor, asymmetric supercapacitors (ASCs) are designed utilizing mesoporous carbon (MC) as the anode, activated carbon (AC) as the cathode, and 1 mol kg<sup>−1</sup> (1 <span>m</span>) tetraethylammonium tetrafluoroborate/propylene carbonate (TEA-BF<sub>4</sub>/PC) as the electrolyte. In ASCs, the MC anode provides broad ion transport channels and significant charge storage capacity for TEA<sup>+</sup>, while the AC cathode, with its large specific surface area, offers numerous adsorption sites for BF<sub>4</sub><sup>−</sup>. Benefiting from the different porous materials matched with adsorbed ions, ASCs significantly enhance the rate performance and high-voltage stability of the device. Electrochemical testing demonstrates that the AC//MC ASCs exhibit an outstanding discharge capacitance of 121 F g<sup>−1</sup> at a current density of 0.1 A g<sup>−1</sup> at 3.2 V, which is sustained at about 65% at 10 A g<sup>−1</sup>. Additionally, the device achieves a remarkable energy density of 43.3 Wh kg<sup>−1</sup> and largest power density of 7.3 kW kg<sup>−1</sup>. This work provides theoretical direction for the design of electrode materials and process optimization in high-specific-energy double-layer capacitors.</p>\",\"PeriodicalId\":11573,\"journal\":{\"name\":\"Energy technology\",\"volume\":\"13 9\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ente.202402028\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ente.202402028","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

为了提高超级电容器的能量密度和稳定的工作电压,设计了以介孔碳(MC)为阳极,活性炭(AC)为阴极,1 mol kg−1 (1 m)四氟硼酸四乙基铵/碳酸丙烯(TEA-BF4/PC)为电解质的非对称超级电容器(ASCs)。在ASCs中,MC阳极为TEA+提供了广阔的离子传输通道和显著的电荷存储能力,而交流阴极具有较大的比表面积,为BF4−提供了大量的吸附位点。得益于与吸附离子匹配的不同多孔材料,ASCs显着提高了器件的速率性能和高压稳定性。电化学测试表明,在3.2 V电流密度为0.1 a g−1时,AC//MC ASCs的放电电容为121 F g−1,在10 a g−1时放电电容约为65%。器件的能量密度达到43.3 Wh kg−1,最大功率密度达到7.3 kW kg−1。该工作为高比能双层电容器电极材料的设计和工艺优化提供了理论指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Matching of Porous Carbon and Adsorbed Ions for High-Specific-Energy Asymmetric Supercapacitors

Matching of Porous Carbon and Adsorbed Ions for High-Specific-Energy Asymmetric Supercapacitors

In order to improve the energy density and stable operating voltage of the supercapacitor, asymmetric supercapacitors (ASCs) are designed utilizing mesoporous carbon (MC) as the anode, activated carbon (AC) as the cathode, and 1 mol kg−1 (1 m) tetraethylammonium tetrafluoroborate/propylene carbonate (TEA-BF4/PC) as the electrolyte. In ASCs, the MC anode provides broad ion transport channels and significant charge storage capacity for TEA+, while the AC cathode, with its large specific surface area, offers numerous adsorption sites for BF4. Benefiting from the different porous materials matched with adsorbed ions, ASCs significantly enhance the rate performance and high-voltage stability of the device. Electrochemical testing demonstrates that the AC//MC ASCs exhibit an outstanding discharge capacitance of 121 F g−1 at a current density of 0.1 A g−1 at 3.2 V, which is sustained at about 65% at 10 A g−1. Additionally, the device achieves a remarkable energy density of 43.3 Wh kg−1 and largest power density of 7.3 kW kg−1. This work provides theoretical direction for the design of electrode materials and process optimization in high-specific-energy double-layer capacitors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy technology
Energy technology ENERGY & FUELS-
CiteScore
7.00
自引率
5.30%
发文量
0
审稿时长
1.3 months
期刊介绍: Energy Technology provides a forum for researchers and engineers from all relevant disciplines concerned with the generation, conversion, storage, and distribution of energy. This new journal shall publish articles covering all technical aspects of energy process engineering from different perspectives, e.g., new concepts of energy generation and conversion; design, operation, control, and optimization of processes for energy generation (e.g., carbon capture) and conversion of energy carriers; improvement of existing processes; combination of single components to systems for energy generation; design of systems for energy storage; production processes of fuels, e.g., hydrogen, electricity, petroleum, biobased fuels; concepts and design of devices for energy distribution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信