Divya Bhansali, Rocco Latorre, Raquel Tonello, David Poolman, Suwan Ding, Brian L. Schmidt, Nigel W. Bunnett, Kam W. Leong
{"title":"阳离子纳米颗粒减轻化疗诱导的周围神经病变","authors":"Divya Bhansali, Rocco Latorre, Raquel Tonello, David Poolman, Suwan Ding, Brian L. Schmidt, Nigel W. Bunnett, Kam W. Leong","doi":"10.1002/anbr.202500002","DOIUrl":null,"url":null,"abstract":"<p>Chemotherapy-induced peripheral neuropathy (CIPN) is a major clinical challenge, particularly for patients treated with paclitaxel (PTX), a highly effective yet neurotoxic chemotherapeutic agent. PTX often causes debilitating neuropathic pain, including mechanical and cold allodynia, driven by neuroinflammation and altered peripheral neuron excitability. This study investigates PTX-loaded cationic PAMAM-Chol nanoparticles (PTX NPs) as a novel strategy to mitigate CIPN. PTX NPs exhibit high drug loading efficiency (99%), sustained release, and reduced neurotoxicity in neuronal cell models. In a murine CIPN model, PTX NPs produce an 85% overall reduction in cold allodynia with a peak inhibition of 90% at day 8 and accelerate the recovery of mechanical allodynia, restoring withdrawal thresholds to baseline levels by day 14, compared to persistent nociception with unencapsulated PTX. PTX NPs also suppress dorsal root ganglia inflammation, reducing the expression of proinflammatory cytokines TNFα and IL-1β. Furthermore, as indicated by phosphorylated ERK, neuronal activation is prevented in PTX NP-treated mice, suggesting a reduction in central sensitization. Importantly, PTX NPs demonstrate no observable toxicity in liver or kidney function. These findings establish a proof of concept that nanomedicine-mediated delivery can alleviate CIPN effectively, offering a promising approach to refine PTX-based chemotherapy regimens.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"5 9","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202500002","citationCount":"0","resultStr":"{\"title\":\"Cationic Nanoparticles Mitigate Chemotherapy-Induced Peripheral Neuropathy\",\"authors\":\"Divya Bhansali, Rocco Latorre, Raquel Tonello, David Poolman, Suwan Ding, Brian L. Schmidt, Nigel W. Bunnett, Kam W. Leong\",\"doi\":\"10.1002/anbr.202500002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Chemotherapy-induced peripheral neuropathy (CIPN) is a major clinical challenge, particularly for patients treated with paclitaxel (PTX), a highly effective yet neurotoxic chemotherapeutic agent. PTX often causes debilitating neuropathic pain, including mechanical and cold allodynia, driven by neuroinflammation and altered peripheral neuron excitability. This study investigates PTX-loaded cationic PAMAM-Chol nanoparticles (PTX NPs) as a novel strategy to mitigate CIPN. PTX NPs exhibit high drug loading efficiency (99%), sustained release, and reduced neurotoxicity in neuronal cell models. In a murine CIPN model, PTX NPs produce an 85% overall reduction in cold allodynia with a peak inhibition of 90% at day 8 and accelerate the recovery of mechanical allodynia, restoring withdrawal thresholds to baseline levels by day 14, compared to persistent nociception with unencapsulated PTX. PTX NPs also suppress dorsal root ganglia inflammation, reducing the expression of proinflammatory cytokines TNFα and IL-1β. Furthermore, as indicated by phosphorylated ERK, neuronal activation is prevented in PTX NP-treated mice, suggesting a reduction in central sensitization. Importantly, PTX NPs demonstrate no observable toxicity in liver or kidney function. These findings establish a proof of concept that nanomedicine-mediated delivery can alleviate CIPN effectively, offering a promising approach to refine PTX-based chemotherapy regimens.</p>\",\"PeriodicalId\":29975,\"journal\":{\"name\":\"Advanced Nanobiomed Research\",\"volume\":\"5 9\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202500002\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nanobiomed Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/anbr.202500002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanobiomed Research","FirstCategoryId":"1085","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/anbr.202500002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Chemotherapy-induced peripheral neuropathy (CIPN) is a major clinical challenge, particularly for patients treated with paclitaxel (PTX), a highly effective yet neurotoxic chemotherapeutic agent. PTX often causes debilitating neuropathic pain, including mechanical and cold allodynia, driven by neuroinflammation and altered peripheral neuron excitability. This study investigates PTX-loaded cationic PAMAM-Chol nanoparticles (PTX NPs) as a novel strategy to mitigate CIPN. PTX NPs exhibit high drug loading efficiency (99%), sustained release, and reduced neurotoxicity in neuronal cell models. In a murine CIPN model, PTX NPs produce an 85% overall reduction in cold allodynia with a peak inhibition of 90% at day 8 and accelerate the recovery of mechanical allodynia, restoring withdrawal thresholds to baseline levels by day 14, compared to persistent nociception with unencapsulated PTX. PTX NPs also suppress dorsal root ganglia inflammation, reducing the expression of proinflammatory cytokines TNFα and IL-1β. Furthermore, as indicated by phosphorylated ERK, neuronal activation is prevented in PTX NP-treated mice, suggesting a reduction in central sensitization. Importantly, PTX NPs demonstrate no observable toxicity in liver or kidney function. These findings establish a proof of concept that nanomedicine-mediated delivery can alleviate CIPN effectively, offering a promising approach to refine PTX-based chemotherapy regimens.
期刊介绍:
Advanced NanoBiomed Research will provide an Open Access home for cutting-edge nanomedicine, bioengineering and biomaterials research aimed at improving human health. The journal will capture a broad spectrum of research from increasingly multi- and interdisciplinary fields of the traditional areas of biomedicine, bioengineering and health-related materials science as well as precision and personalized medicine, drug delivery, and artificial intelligence-driven health science.
The scope of Advanced NanoBiomed Research will cover the following key subject areas:
▪ Nanomedicine and nanotechnology, with applications in drug and gene delivery, diagnostics, theranostics, photothermal and photodynamic therapy and multimodal imaging.
▪ Biomaterials, including hydrogels, 2D materials, biopolymers, composites, biodegradable materials, biohybrids and biomimetics (such as artificial cells, exosomes and extracellular vesicles), as well as all organic and inorganic materials for biomedical applications.
▪ Biointerfaces, such as anti-microbial surfaces and coatings, as well as interfaces for cellular engineering, immunoengineering and 3D cell culture.
▪ Biofabrication including (bio)inks and technologies, towards generation of functional tissues and organs.
▪ Tissue engineering and regenerative medicine, including scaffolds and scaffold-free approaches, for bone, ligament, muscle, skin, neural, cardiac tissue engineering and tissue vascularization.
▪ Devices for healthcare applications, disease modelling and treatment, such as diagnostics, lab-on-a-chip, organs-on-a-chip, bioMEMS, bioelectronics, wearables, actuators, soft robotics, and intelligent drug delivery systems.
with a strong focus on applications of these fields, from bench-to-bedside, for treatment of all diseases and disorders, such as infectious, autoimmune, cardiovascular and metabolic diseases, neurological disorders and cancer; including pharmacology and toxicology studies.