硫酸盐还原菌群在厌氧扑热息痛生物降解中的作用

IF 3.2 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Kajal Saini, Smita S. Kumar, Vivek Kumar, Somvir Bajar
{"title":"硫酸盐还原菌群在厌氧扑热息痛生物降解中的作用","authors":"Kajal Saini,&nbsp;Smita S. Kumar,&nbsp;Vivek Kumar,&nbsp;Somvir Bajar","doi":"10.1007/s10532-025-10184-8","DOIUrl":null,"url":null,"abstract":"<div><p>The escalating global production and usage of paracetamol (C<sub>8</sub>H<sub>9</sub>NO<sub>2</sub>), a widely administered analgesic and antipyretic pharmaceutical, has led to its ubiquitous presence in environmental matrices, including surface waters, municipal wastewater, and even potable water sources. Owing to its persistence and bioaccumulative potential, paracetamol poses a significant ecotoxicological threat, particularly through trophic transfer in aquatic ecosystems. Conventional wastewater treatment methods often fall short in completely eliminating such micropollutants. In this context, bioremediation offers a promising, sustainable, and cost-effective alternative for pharmaceutical remediation. This study investigates the anaerobic degradation potential of two sulfate-reducing bacterial consortia, designated Consortium I and Consortium II, isolated from Okhla landfill leachate and enriched with distinct Postgate media formulations. Paracetamol was introduced at varying concentrations (50–500 mg/L), with and without supplementation of an auxiliary carbon source, sodium lactate. Metagenomic profiling via 16S rRNA sequencing revealed that Consortium I was primarily composed of <i>Clostridium</i> (40.1%) and <i>Acidipropionibacterium</i> (31.2%), whereas Consortium II exhibited a dominant presence of <i>Clostridium</i> (80.3%) and <i>Bacillus</i> (7.99%). Consortium II exhibited superior degradation kinetics, achieving complete removal of 500 mg/L paracetamol in 48 h under lactate-free conditions. Conversely, the presence of sodium lactate significantly attenuated degradation efficiency, suggesting substrate competition and metabolic preference. Gas chromatography-mass spectrometry (GC-MS) identified 4-aminophenol and hydroquinone as transient intermediates, supporting a proposed anaerobic degradation pathway for paracetamol. These findings underscore the potential of native sulfate reducing bacterial consortia in the bioremediation of contaminants and provide mechanistic insight into anaerobic paracetamol degradation, offering a viable strategy for enhanced treatment efficacy of contaminated waste streams.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"36 5","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Demonstrated role of sulfate-reducing bacterial consortia in anaerobic paracetamol biodegradation\",\"authors\":\"Kajal Saini,&nbsp;Smita S. Kumar,&nbsp;Vivek Kumar,&nbsp;Somvir Bajar\",\"doi\":\"10.1007/s10532-025-10184-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The escalating global production and usage of paracetamol (C<sub>8</sub>H<sub>9</sub>NO<sub>2</sub>), a widely administered analgesic and antipyretic pharmaceutical, has led to its ubiquitous presence in environmental matrices, including surface waters, municipal wastewater, and even potable water sources. Owing to its persistence and bioaccumulative potential, paracetamol poses a significant ecotoxicological threat, particularly through trophic transfer in aquatic ecosystems. Conventional wastewater treatment methods often fall short in completely eliminating such micropollutants. In this context, bioremediation offers a promising, sustainable, and cost-effective alternative for pharmaceutical remediation. This study investigates the anaerobic degradation potential of two sulfate-reducing bacterial consortia, designated Consortium I and Consortium II, isolated from Okhla landfill leachate and enriched with distinct Postgate media formulations. Paracetamol was introduced at varying concentrations (50–500 mg/L), with and without supplementation of an auxiliary carbon source, sodium lactate. Metagenomic profiling via 16S rRNA sequencing revealed that Consortium I was primarily composed of <i>Clostridium</i> (40.1%) and <i>Acidipropionibacterium</i> (31.2%), whereas Consortium II exhibited a dominant presence of <i>Clostridium</i> (80.3%) and <i>Bacillus</i> (7.99%). Consortium II exhibited superior degradation kinetics, achieving complete removal of 500 mg/L paracetamol in 48 h under lactate-free conditions. Conversely, the presence of sodium lactate significantly attenuated degradation efficiency, suggesting substrate competition and metabolic preference. Gas chromatography-mass spectrometry (GC-MS) identified 4-aminophenol and hydroquinone as transient intermediates, supporting a proposed anaerobic degradation pathway for paracetamol. These findings underscore the potential of native sulfate reducing bacterial consortia in the bioremediation of contaminants and provide mechanistic insight into anaerobic paracetamol degradation, offering a viable strategy for enhanced treatment efficacy of contaminated waste streams.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":486,\"journal\":{\"name\":\"Biodegradation\",\"volume\":\"36 5\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biodegradation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10532-025-10184-8\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodegradation","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10532-025-10184-8","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

作为一种广泛使用的镇痛解热药物,扑热息痛(C8H9NO2)的全球生产和使用不断增加,导致其在环境基质中无处不在,包括地表水、城市废水,甚至饮用水来源。由于其持久性和生物蓄积性,扑热息痛造成了重大的生态毒理学威胁,特别是通过水生生态系统的营养转移。传统的废水处理方法往往不能完全消除这些微污染物。在这种情况下,生物修复为药物修复提供了一种有前途的、可持续的、具有成本效益的替代方案。本研究研究了从奥克拉垃圾填埋场渗滤液中分离出来的两个硫酸盐还原细菌群落,称为财团I和财团II,并在不同的Postgate培养基配方中富集。以不同浓度(50 - 500mg /L)引入扑热息痛,并添加或不添加辅助碳源乳酸钠。通过16S rRNA测序的宏基因组分析显示,财团I主要由Clostridium(40.1%)和Acidipropionibacterium(31.2%)组成,而财团II则以Clostridium(80.3%)和Bacillus(7.99%)为主。财团II表现出优异的降解动力学,在无乳酸条件下,在48小时内完全去除500mg /L扑热息痛。相反,乳酸钠的存在显著降低了降解效率,表明底物竞争和代谢偏好。气相色谱-质谱联用(GC-MS)鉴定出4-氨基酚和对苯二酚为瞬时中间体,支持了对乙酰氨基酚厌氧降解途径。这些发现强调了天然硫酸盐还原菌群在污染物生物修复中的潜力,并为厌氧对乙酰氨基酚降解提供了机制见解,为提高污染废物流的处理效率提供了可行的策略。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Demonstrated role of sulfate-reducing bacterial consortia in anaerobic paracetamol biodegradation

The escalating global production and usage of paracetamol (C8H9NO2), a widely administered analgesic and antipyretic pharmaceutical, has led to its ubiquitous presence in environmental matrices, including surface waters, municipal wastewater, and even potable water sources. Owing to its persistence and bioaccumulative potential, paracetamol poses a significant ecotoxicological threat, particularly through trophic transfer in aquatic ecosystems. Conventional wastewater treatment methods often fall short in completely eliminating such micropollutants. In this context, bioremediation offers a promising, sustainable, and cost-effective alternative for pharmaceutical remediation. This study investigates the anaerobic degradation potential of two sulfate-reducing bacterial consortia, designated Consortium I and Consortium II, isolated from Okhla landfill leachate and enriched with distinct Postgate media formulations. Paracetamol was introduced at varying concentrations (50–500 mg/L), with and without supplementation of an auxiliary carbon source, sodium lactate. Metagenomic profiling via 16S rRNA sequencing revealed that Consortium I was primarily composed of Clostridium (40.1%) and Acidipropionibacterium (31.2%), whereas Consortium II exhibited a dominant presence of Clostridium (80.3%) and Bacillus (7.99%). Consortium II exhibited superior degradation kinetics, achieving complete removal of 500 mg/L paracetamol in 48 h under lactate-free conditions. Conversely, the presence of sodium lactate significantly attenuated degradation efficiency, suggesting substrate competition and metabolic preference. Gas chromatography-mass spectrometry (GC-MS) identified 4-aminophenol and hydroquinone as transient intermediates, supporting a proposed anaerobic degradation pathway for paracetamol. These findings underscore the potential of native sulfate reducing bacterial consortia in the bioremediation of contaminants and provide mechanistic insight into anaerobic paracetamol degradation, offering a viable strategy for enhanced treatment efficacy of contaminated waste streams.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biodegradation
Biodegradation 工程技术-生物工程与应用微生物
CiteScore
5.60
自引率
0.00%
发文量
36
审稿时长
6 months
期刊介绍: Biodegradation publishes papers, reviews and mini-reviews on the biotransformation, mineralization, detoxification, recycling, amelioration or treatment of chemicals or waste materials by naturally-occurring microbial strains, microbial associations, or recombinant organisms. Coverage spans a range of topics, including Biochemistry of biodegradative pathways; Genetics of biodegradative organisms and development of recombinant biodegrading organisms; Molecular biology-based studies of biodegradative microbial communities; Enhancement of naturally-occurring biodegradative properties and activities. Also featured are novel applications of biodegradation and biotransformation technology, to soil, water, sewage, heavy metals and radionuclides, organohalogens, high-COD wastes, straight-, branched-chain and aromatic hydrocarbons; Coverage extends to design and scale-up of laboratory processes and bioreactor systems. Also offered are papers on economic and legal aspects of biological treatment of waste.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信