水解降解PLA纳米复合材料:纤维素纳米晶体表面化学和分散状态的影响

IF 4.8 2区 工程技术 Q1 MATERIALS SCIENCE, PAPER & WOOD
Xiangdong Hua, Taixiang Zhang, Yihang Duan, Xueping Liu, Hao Wu, Yongxin Duan, Jianming Zhang
{"title":"水解降解PLA纳米复合材料:纤维素纳米晶体表面化学和分散状态的影响","authors":"Xiangdong Hua,&nbsp;Taixiang Zhang,&nbsp;Yihang Duan,&nbsp;Xueping Liu,&nbsp;Hao Wu,&nbsp;Yongxin Duan,&nbsp;Jianming Zhang","doi":"10.1007/s10570-025-06717-2","DOIUrl":null,"url":null,"abstract":"<div><p>Cellulose nanocrystals (CNCs) are promising biodegradable fillers for poly(lactic acid) (PLA), but their influence on PLA degradation, particularly the relationship between the surface chemistry and dispersion of CNCs and hydrolytic degradation behavior, remains incompletely understood. Herein, we systematically investigate the hydrolysis of PLA composites incorporating unmodified and polymer-grafted CNCs. Results show that polymer grafting enhances the hydrophobicity of CNCs and improves their dispersion within the PLA matrix. Unexpectedly, unmodified CNCs exhibit negligible impact on PLA hydrolysis, whereas grafted CNCs accelerate hydrolytic degradation regardless of whether they are modified with hydrolysis-resistant poly(methyl methacrylate) (PMMA) or hydrolysis-sensitive poly(vinyl acetate) (PVAc). Morphological observation and X-ray diffraction/scattering analysis reveal that PLA and its composites follow a bulk erosion mechanism during hydrolysis. On one hand, the well-dispersed CNCs create additional pathways for hydrolytic media to penetrate the material interior. On the other hand, the grafted PVAc enriched at the interfaces undergoes preferential hydrolysis, thereby further amplifying the promoting effect of CNCs on PLA degradation. This research sheds light on the hydrolytic degradation behavior of PLA/biomass-filler composites and provides fundamental insights for designing PLA composites with tailored degradation profiles.</p></div>","PeriodicalId":511,"journal":{"name":"Cellulose","volume":"32 14","pages":"8135 - 8149"},"PeriodicalIF":4.8000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrolytic degradation of PLA nanocomposites: impact of cellulose nanocrystal surface chemistry and dispersion state\",\"authors\":\"Xiangdong Hua,&nbsp;Taixiang Zhang,&nbsp;Yihang Duan,&nbsp;Xueping Liu,&nbsp;Hao Wu,&nbsp;Yongxin Duan,&nbsp;Jianming Zhang\",\"doi\":\"10.1007/s10570-025-06717-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cellulose nanocrystals (CNCs) are promising biodegradable fillers for poly(lactic acid) (PLA), but their influence on PLA degradation, particularly the relationship between the surface chemistry and dispersion of CNCs and hydrolytic degradation behavior, remains incompletely understood. Herein, we systematically investigate the hydrolysis of PLA composites incorporating unmodified and polymer-grafted CNCs. Results show that polymer grafting enhances the hydrophobicity of CNCs and improves their dispersion within the PLA matrix. Unexpectedly, unmodified CNCs exhibit negligible impact on PLA hydrolysis, whereas grafted CNCs accelerate hydrolytic degradation regardless of whether they are modified with hydrolysis-resistant poly(methyl methacrylate) (PMMA) or hydrolysis-sensitive poly(vinyl acetate) (PVAc). Morphological observation and X-ray diffraction/scattering analysis reveal that PLA and its composites follow a bulk erosion mechanism during hydrolysis. On one hand, the well-dispersed CNCs create additional pathways for hydrolytic media to penetrate the material interior. On the other hand, the grafted PVAc enriched at the interfaces undergoes preferential hydrolysis, thereby further amplifying the promoting effect of CNCs on PLA degradation. This research sheds light on the hydrolytic degradation behavior of PLA/biomass-filler composites and provides fundamental insights for designing PLA composites with tailored degradation profiles.</p></div>\",\"PeriodicalId\":511,\"journal\":{\"name\":\"Cellulose\",\"volume\":\"32 14\",\"pages\":\"8135 - 8149\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellulose\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10570-025-06717-2\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellulose","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10570-025-06717-2","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0

摘要

纤维素纳米晶体(CNCs)是一种很有前途的聚乳酸(PLA)生物降解填料,但其对PLA降解的影响,特别是其表面化学和分散与水解降解行为之间的关系尚不完全清楚。在这里,我们系统地研究了含有未改性和聚合物接枝的CNCs的PLA复合材料的水解。结果表明,聚合物接枝提高了cnc的疏水性,改善了其在PLA基体中的分散性。出乎意料的是,未改性的cnc对PLA水解的影响可以忽略不计,而接枝的cnc无论用抗水解聚甲基丙烯酸甲酯(PMMA)还是水解敏感聚醋酸乙烯酯(PVAc)改性,都会加速水解降解。形貌观察和x射线衍射/散射分析表明,PLA及其复合材料在水解过程中遵循体侵蚀机制。一方面,分散良好的cnc为水解介质穿透材料内部创造了额外的途径。另一方面,在界面富集的接枝PVAc发生优先水解,从而进一步放大了cnc对PLA降解的促进作用。该研究揭示了PLA/生物质填料复合材料的水解降解行为,并为设计具有定制降解轮廓的PLA复合材料提供了基本见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hydrolytic degradation of PLA nanocomposites: impact of cellulose nanocrystal surface chemistry and dispersion state

Cellulose nanocrystals (CNCs) are promising biodegradable fillers for poly(lactic acid) (PLA), but their influence on PLA degradation, particularly the relationship between the surface chemistry and dispersion of CNCs and hydrolytic degradation behavior, remains incompletely understood. Herein, we systematically investigate the hydrolysis of PLA composites incorporating unmodified and polymer-grafted CNCs. Results show that polymer grafting enhances the hydrophobicity of CNCs and improves their dispersion within the PLA matrix. Unexpectedly, unmodified CNCs exhibit negligible impact on PLA hydrolysis, whereas grafted CNCs accelerate hydrolytic degradation regardless of whether they are modified with hydrolysis-resistant poly(methyl methacrylate) (PMMA) or hydrolysis-sensitive poly(vinyl acetate) (PVAc). Morphological observation and X-ray diffraction/scattering analysis reveal that PLA and its composites follow a bulk erosion mechanism during hydrolysis. On one hand, the well-dispersed CNCs create additional pathways for hydrolytic media to penetrate the material interior. On the other hand, the grafted PVAc enriched at the interfaces undergoes preferential hydrolysis, thereby further amplifying the promoting effect of CNCs on PLA degradation. This research sheds light on the hydrolytic degradation behavior of PLA/biomass-filler composites and provides fundamental insights for designing PLA composites with tailored degradation profiles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cellulose
Cellulose 工程技术-材料科学:纺织
CiteScore
10.10
自引率
10.50%
发文量
580
审稿时长
3-8 weeks
期刊介绍: Cellulose is an international journal devoted to the dissemination of research and scientific and technological progress in the field of cellulose and related naturally occurring polymers. The journal is concerned with the pure and applied science of cellulose and related materials, and also with the development of relevant new technologies. This includes the chemistry, biochemistry, physics and materials science of cellulose and its sources, including wood and other biomass resources, and their derivatives. Coverage extends to the conversion of these polymers and resources into manufactured goods, such as pulp, paper, textiles, and manufactured as well natural fibers, and to the chemistry of materials used in their processing. Cellulose publishes review articles, research papers, and technical notes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信