探索claudin蛋白:从序列基序到它们对紧密连接介导的信号通路的影响

IF 2.4 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Lingling Bao, Siqi Yang, Wenhua Zhao, Yongchun Zuo
{"title":"探索claudin蛋白:从序列基序到它们对紧密连接介导的信号通路的影响","authors":"Lingling Bao,&nbsp;Siqi Yang,&nbsp;Wenhua Zhao,&nbsp;Yongchun Zuo","doi":"10.1007/s00726-025-03479-w","DOIUrl":null,"url":null,"abstract":"<div><p>Claudin (CLDN) proteins are extensively studied due to their critical role in maintaining tissue barriers and cell polarity. However, significant gaps remain in understanding the functional mechanisms of their sequence motifs and the molecular mechanisms of their interactions with other tight junction proteins<b>.</b> This review systematically examines the multifunctional properties of the CLDN protein family from the perspectives of sequence and structure. During evolution, CLDN family members have developed highly conserved structural features, particularly key conserved sites within the first extracellular loop (ECL1) and the C-terminal PDZ-binding domain, which play a central role in regulating the barrier function of tight junctions, ion selectivity, and protein–protein interactions. Furthermore, the distribution pattern of acidic and basic amino acids in ECL1 has been shown to directly determine ion selectivity and paracellular permeability. Meanwhile, the assembly and functional stability of tight junctions are precisely regulated by the C-terminal PDZ-binding domain through its interactions with the ZO protein family. Additionally, the study further elucidates how CLDN proteins modulate critical signaling pathways governing cellular proliferation, survival, and permeability, thereby participating in diverse physiological and pathological processes. These insights have deepened the understanding of the functional diversity of CLDN proteins and provided a new theoretical basis for developing disease diagnostic markers and designing targeted treatment strategies based on CLDN proteins.</p></div>","PeriodicalId":7810,"journal":{"name":"Amino Acids","volume":"57 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00726-025-03479-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Exploring claudin proteins: from sequence motifs to their impact on tight junction-mediated signaling pathways\",\"authors\":\"Lingling Bao,&nbsp;Siqi Yang,&nbsp;Wenhua Zhao,&nbsp;Yongchun Zuo\",\"doi\":\"10.1007/s00726-025-03479-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Claudin (CLDN) proteins are extensively studied due to their critical role in maintaining tissue barriers and cell polarity. However, significant gaps remain in understanding the functional mechanisms of their sequence motifs and the molecular mechanisms of their interactions with other tight junction proteins<b>.</b> This review systematically examines the multifunctional properties of the CLDN protein family from the perspectives of sequence and structure. During evolution, CLDN family members have developed highly conserved structural features, particularly key conserved sites within the first extracellular loop (ECL1) and the C-terminal PDZ-binding domain, which play a central role in regulating the barrier function of tight junctions, ion selectivity, and protein–protein interactions. Furthermore, the distribution pattern of acidic and basic amino acids in ECL1 has been shown to directly determine ion selectivity and paracellular permeability. Meanwhile, the assembly and functional stability of tight junctions are precisely regulated by the C-terminal PDZ-binding domain through its interactions with the ZO protein family. Additionally, the study further elucidates how CLDN proteins modulate critical signaling pathways governing cellular proliferation, survival, and permeability, thereby participating in diverse physiological and pathological processes. These insights have deepened the understanding of the functional diversity of CLDN proteins and provided a new theoretical basis for developing disease diagnostic markers and designing targeted treatment strategies based on CLDN proteins.</p></div>\",\"PeriodicalId\":7810,\"journal\":{\"name\":\"Amino Acids\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00726-025-03479-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Amino Acids\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00726-025-03479-w\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Amino Acids","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s00726-025-03479-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

Claudin (CLDN)蛋白因其在维持组织屏障和细胞极性方面的关键作用而被广泛研究。然而,在了解其序列基序的功能机制以及它们与其他紧密连接蛋白相互作用的分子机制方面仍然存在重大空白。本文从序列和结构的角度系统地探讨了CLDN蛋白家族的多功能特性。在进化过程中,CLDN家族成员已经发展出高度保守的结构特征,特别是第一细胞外环(ECL1)和c端pdz结合域内的关键保守位点,它们在调节紧密连接的屏障功能、离子选择性和蛋白-蛋白相互作用中起着核心作用。此外,酸性和碱性氨基酸在ECL1中的分布模式已被证明直接决定离子选择性和细胞旁通透性。同时,c端pdz结合域通过与ZO蛋白家族的相互作用,精确调控紧密连接的组装和功能稳定性。此外,该研究进一步阐明了CLDN蛋白如何调节控制细胞增殖、存活和通透性的关键信号通路,从而参与多种生理和病理过程。这些发现加深了对CLDN蛋白功能多样性的认识,为开发基于CLDN蛋白的疾病诊断标志物和设计靶向治疗策略提供了新的理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring claudin proteins: from sequence motifs to their impact on tight junction-mediated signaling pathways

Claudin (CLDN) proteins are extensively studied due to their critical role in maintaining tissue barriers and cell polarity. However, significant gaps remain in understanding the functional mechanisms of their sequence motifs and the molecular mechanisms of their interactions with other tight junction proteins. This review systematically examines the multifunctional properties of the CLDN protein family from the perspectives of sequence and structure. During evolution, CLDN family members have developed highly conserved structural features, particularly key conserved sites within the first extracellular loop (ECL1) and the C-terminal PDZ-binding domain, which play a central role in regulating the barrier function of tight junctions, ion selectivity, and protein–protein interactions. Furthermore, the distribution pattern of acidic and basic amino acids in ECL1 has been shown to directly determine ion selectivity and paracellular permeability. Meanwhile, the assembly and functional stability of tight junctions are precisely regulated by the C-terminal PDZ-binding domain through its interactions with the ZO protein family. Additionally, the study further elucidates how CLDN proteins modulate critical signaling pathways governing cellular proliferation, survival, and permeability, thereby participating in diverse physiological and pathological processes. These insights have deepened the understanding of the functional diversity of CLDN proteins and provided a new theoretical basis for developing disease diagnostic markers and designing targeted treatment strategies based on CLDN proteins.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Amino Acids
Amino Acids 生物-生化与分子生物学
CiteScore
6.40
自引率
5.70%
发文量
99
审稿时长
2.2 months
期刊介绍: Amino Acids publishes contributions from all fields of amino acid and protein research: analysis, separation, synthesis, biosynthesis, cross linking amino acids, racemization/enantiomers, modification of amino acids as phosphorylation, methylation, acetylation, glycosylation and nonenzymatic glycosylation, new roles for amino acids in physiology and pathophysiology, biology, amino acid analogues and derivatives, polyamines, radiated amino acids, peptides, stable isotopes and isotopes of amino acids. Applications in medicine, food chemistry, nutrition, gastroenterology, nephrology, neurochemistry, pharmacology, excitatory amino acids are just some of the topics covered. Fields of interest include: Biochemistry, food chemistry, nutrition, neurology, psychiatry, pharmacology, nephrology, gastroenterology, microbiology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信