通过计算建模和仿真大规模鉴定PARP7抑制剂

IF 2.5 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Xiaochen Yang, Baolin Liu and Daixi Li
{"title":"通过计算建模和仿真大规模鉴定PARP7抑制剂","authors":"Xiaochen Yang, Baolin Liu and Daixi Li","doi":"10.1039/D5NJ02053K","DOIUrl":null,"url":null,"abstract":"<p >Poly(ADP-ribose) polymerases (PARPs) are attractive therapeutic targets for cancer. This study focuses on PARP7, a mono(ADP-ribose) polymerase with emerging potential in cancer therapy due to its roles in immune response and tumorigenesis. Using computational modeling, we screened millions of compounds through molecular docking, machine learning based on molecular fingerprints, molecular dynamics (MD) simulations, and ADME profiling. We identified promising PARP7 inhibitor candidates exhibiting higher binding affinity than NAD<small><sup>+</sup></small> and comparable affinity to RBN2397, with favorable binding energies and pharmacological properties. MD simulations confirmed complex stability, while interaction analysis revealed key binding residues including conserved residues (Y564/H532) and hydrophobic residues (F575/I542). <em>In silico</em> ADME predictions indicated favorable drug-like properties and pharmacokinetic profiles. This work establishes a foundation for developing novel PARP7 inhibitors, offering new therapeutic strategies for cancer.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 37","pages":" 16320-16332"},"PeriodicalIF":2.5000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large-scale identification of PARP7 inhibitors via computational modeling and simulation\",\"authors\":\"Xiaochen Yang, Baolin Liu and Daixi Li\",\"doi\":\"10.1039/D5NJ02053K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Poly(ADP-ribose) polymerases (PARPs) are attractive therapeutic targets for cancer. This study focuses on PARP7, a mono(ADP-ribose) polymerase with emerging potential in cancer therapy due to its roles in immune response and tumorigenesis. Using computational modeling, we screened millions of compounds through molecular docking, machine learning based on molecular fingerprints, molecular dynamics (MD) simulations, and ADME profiling. We identified promising PARP7 inhibitor candidates exhibiting higher binding affinity than NAD<small><sup>+</sup></small> and comparable affinity to RBN2397, with favorable binding energies and pharmacological properties. MD simulations confirmed complex stability, while interaction analysis revealed key binding residues including conserved residues (Y564/H532) and hydrophobic residues (F575/I542). <em>In silico</em> ADME predictions indicated favorable drug-like properties and pharmacokinetic profiles. This work establishes a foundation for developing novel PARP7 inhibitors, offering new therapeutic strategies for cancer.</p>\",\"PeriodicalId\":95,\"journal\":{\"name\":\"New Journal of Chemistry\",\"volume\":\" 37\",\"pages\":\" 16320-16332\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Journal of Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/nj/d5nj02053k\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nj/d5nj02053k","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

聚(adp -核糖)聚合酶(PARPs)是治疗癌症的重要靶点。PARP7是一种单核苷酸(adp -核糖)聚合酶,由于其在免疫反应和肿瘤发生中的作用,在癌症治疗中具有新兴的潜力。利用计算模型,我们通过分子对接、基于分子指纹的机器学习、分子动力学(MD)模拟和ADME分析筛选了数百万种化合物。我们发现有希望的PARP7抑制剂候选物具有比NAD+更高的结合亲和力和与RBN2397相当的亲和力,具有良好的结合能和药理学特性。MD模拟证实了复合物的稳定性,而相互作用分析显示了关键的结合残基包括保守残基(Y564/H532)和疏水残基(F575/I542)。在计算机ADME预测显示有利的药物样性质和药代动力学特征。这项工作为开发新的PARP7抑制剂奠定了基础,为癌症的治疗提供了新的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Large-scale identification of PARP7 inhibitors via computational modeling and simulation

Large-scale identification of PARP7 inhibitors via computational modeling and simulation

Poly(ADP-ribose) polymerases (PARPs) are attractive therapeutic targets for cancer. This study focuses on PARP7, a mono(ADP-ribose) polymerase with emerging potential in cancer therapy due to its roles in immune response and tumorigenesis. Using computational modeling, we screened millions of compounds through molecular docking, machine learning based on molecular fingerprints, molecular dynamics (MD) simulations, and ADME profiling. We identified promising PARP7 inhibitor candidates exhibiting higher binding affinity than NAD+ and comparable affinity to RBN2397, with favorable binding energies and pharmacological properties. MD simulations confirmed complex stability, while interaction analysis revealed key binding residues including conserved residues (Y564/H532) and hydrophobic residues (F575/I542). In silico ADME predictions indicated favorable drug-like properties and pharmacokinetic profiles. This work establishes a foundation for developing novel PARP7 inhibitors, offering new therapeutic strategies for cancer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Journal of Chemistry
New Journal of Chemistry 化学-化学综合
CiteScore
5.30
自引率
6.10%
发文量
1832
审稿时长
2 months
期刊介绍: A journal for new directions in chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信