{"title":"高性能固态电解质的数据驱动成分机器学习","authors":"Jiayao Yu, Lujie Jin, Yujin Ji and Youyong Li","doi":"10.1039/D5QM00438A","DOIUrl":null,"url":null,"abstract":"<p >As a pivotal advancement in energy storage technology, all-solid-state batteries represent a transformative direction for next-generation lithium-ion batteries. To address the critical challenge of low ionic conductivity in solid-state electrolytes (SSEs), we propose a machine learning-driven screening workflow to search for SSEs with high ionic conductivity. By leveraging an experimental database of lithium-ion SSEs, we trained five ensemble boosting models using exclusive elemental composition and temperature parameters. The CatBoost algorithm emerges as the optimal predictor, achieving superior accuracy in ionic conductivity estimation. By implementing this model, we systematically screened 3311 lithium-containing materials from the Materials Project database, identifying 22 promising candidates with the predicted ionic conductivity exceeding 1 mS cm<small><sup>−1</sup></small>. Especially, the predicted conductivity of Li<small><sub>8</sub></small>SeN<small><sub>2</sub></small> (2.72 mS cm<small><sup>−1</sup></small>) is well consistent with the AIMD measurement (2.85 mS cm<small><sup>−1</sup></small>). This data-driven approach accelerates SSE discovery while providing fundamental insights into structure–property relationships, establishing a robust framework for next-generation electrolyte development.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 19","pages":" 2871-2878"},"PeriodicalIF":6.4000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-driven composition-only machine learning for high-performance solid-state electrolytes\",\"authors\":\"Jiayao Yu, Lujie Jin, Yujin Ji and Youyong Li\",\"doi\":\"10.1039/D5QM00438A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >As a pivotal advancement in energy storage technology, all-solid-state batteries represent a transformative direction for next-generation lithium-ion batteries. To address the critical challenge of low ionic conductivity in solid-state electrolytes (SSEs), we propose a machine learning-driven screening workflow to search for SSEs with high ionic conductivity. By leveraging an experimental database of lithium-ion SSEs, we trained five ensemble boosting models using exclusive elemental composition and temperature parameters. The CatBoost algorithm emerges as the optimal predictor, achieving superior accuracy in ionic conductivity estimation. By implementing this model, we systematically screened 3311 lithium-containing materials from the Materials Project database, identifying 22 promising candidates with the predicted ionic conductivity exceeding 1 mS cm<small><sup>−1</sup></small>. Especially, the predicted conductivity of Li<small><sub>8</sub></small>SeN<small><sub>2</sub></small> (2.72 mS cm<small><sup>−1</sup></small>) is well consistent with the AIMD measurement (2.85 mS cm<small><sup>−1</sup></small>). This data-driven approach accelerates SSE discovery while providing fundamental insights into structure–property relationships, establishing a robust framework for next-generation electrolyte development.</p>\",\"PeriodicalId\":86,\"journal\":{\"name\":\"Materials Chemistry Frontiers\",\"volume\":\" 19\",\"pages\":\" 2871-2878\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Chemistry Frontiers\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d5qm00438a\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d5qm00438a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
作为储能技术的关键进步,全固态电池代表了下一代锂离子电池的变革方向。为了解决固态电解质(sse)中低离子电导率的关键挑战,我们提出了一种机器学习驱动的筛选工作流程来搜索具有高离子电导率的sse。通过利用锂离子ssi实验数据库,我们训练了五个使用单独元素组成和温度参数的系综促进模型。CatBoost算法作为最佳预测器出现,在离子电导率估计中实现了卓越的准确性。通过实施该模型,我们系统地从materials Project数据库中筛选了3311种含锂材料,确定了22种有希望的候选材料,预测离子电导率超过1 mS cm−1。特别是,Li8SeN2的预测电导率(2.72 mS cm−1)与AIMD测量值(2.85 mS cm−1)非常吻合。这种数据驱动的方法加速了SSE的发现,同时提供了对结构-性质关系的基本见解,为下一代电解质的开发建立了强大的框架。
Data-driven composition-only machine learning for high-performance solid-state electrolytes
As a pivotal advancement in energy storage technology, all-solid-state batteries represent a transformative direction for next-generation lithium-ion batteries. To address the critical challenge of low ionic conductivity in solid-state electrolytes (SSEs), we propose a machine learning-driven screening workflow to search for SSEs with high ionic conductivity. By leveraging an experimental database of lithium-ion SSEs, we trained five ensemble boosting models using exclusive elemental composition and temperature parameters. The CatBoost algorithm emerges as the optimal predictor, achieving superior accuracy in ionic conductivity estimation. By implementing this model, we systematically screened 3311 lithium-containing materials from the Materials Project database, identifying 22 promising candidates with the predicted ionic conductivity exceeding 1 mS cm−1. Especially, the predicted conductivity of Li8SeN2 (2.72 mS cm−1) is well consistent with the AIMD measurement (2.85 mS cm−1). This data-driven approach accelerates SSE discovery while providing fundamental insights into structure–property relationships, establishing a robust framework for next-generation electrolyte development.
期刊介绍:
Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome.
This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.