二噻唑[3,2-b:2 ',3 ' -d]并并[1,2-c][1,2,5]噻二唑核有序骨架堆叠聚合小分子受体的合成及其在全聚合物太阳能电池中的应用

IF 2.5 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Tiantian Wang, Jianhong Wei, Furong Shi, Hejie Wang, Jinye He, Xudong Lv, Yuan Zhou, Pengzhi Guo, Chenglong Wang and Yangjun Xia
{"title":"二噻唑[3,2-b:2 ',3 ' -d]并并[1,2-c][1,2,5]噻二唑核有序骨架堆叠聚合小分子受体的合成及其在全聚合物太阳能电池中的应用","authors":"Tiantian Wang, Jianhong Wei, Furong Shi, Hejie Wang, Jinye He, Xudong Lv, Yuan Zhou, Pengzhi Guo, Chenglong Wang and Yangjun Xia","doi":"10.1039/D5NJ02939B","DOIUrl":null,"url":null,"abstract":"<p >In recent years, polymerized small molecule acceptors (PSMAs) have emerged as a promising strategy that combines the strong absorption of small molecules with the film-forming ability and stability of polymers, thereby greatly boosting the performance of all-polymer solar cells (all-PSCs). We designed a non-fused acceptor, DTBT-IC, and its polymeric counterpart, PDTBT-Br-T, by selecting DTBT as the core, bithiophene as the π-bridge, and IC as the terminal group. PDTBT-Br-T was synthesized <em>via</em> Stille coupling and used with PM6 as the donor to fabricate organic solar cells. The PDTBT-Br-T-based device delivered superior performance, with a <em>V</em><small><sub>OC</sub></small> of 1.050 V, <em>J</em><small><sub>SC</sub></small> of 9.32 mA cm<small><sup>−2</sup></small>, FF of 45.33%, and a PCE of 4.44%, outperforming the DTBT-IC-based counterpart. Morphological and structural analyses revealed that PDTBT-Br-T exhibits more ordered backbone stacking and defined phase separation, enhancing exciton dissociation and charge transport, and suppressing energy loss. The study highlights that polymerization of DTBT-IC enhances intermolecular packing and microstructure, offering critical design insights for efficient all-PSCs.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 37","pages":" 16382-16389"},"PeriodicalIF":2.5000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of dithieno[3,2-b:2′,3′-d]benzo[1,2-c][1,2,5]thiadiazole-cored polymerized small-molecule acceptors with ordered backbone stacking and their application in all-polymer solar cells\",\"authors\":\"Tiantian Wang, Jianhong Wei, Furong Shi, Hejie Wang, Jinye He, Xudong Lv, Yuan Zhou, Pengzhi Guo, Chenglong Wang and Yangjun Xia\",\"doi\":\"10.1039/D5NJ02939B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In recent years, polymerized small molecule acceptors (PSMAs) have emerged as a promising strategy that combines the strong absorption of small molecules with the film-forming ability and stability of polymers, thereby greatly boosting the performance of all-polymer solar cells (all-PSCs). We designed a non-fused acceptor, DTBT-IC, and its polymeric counterpart, PDTBT-Br-T, by selecting DTBT as the core, bithiophene as the π-bridge, and IC as the terminal group. PDTBT-Br-T was synthesized <em>via</em> Stille coupling and used with PM6 as the donor to fabricate organic solar cells. The PDTBT-Br-T-based device delivered superior performance, with a <em>V</em><small><sub>OC</sub></small> of 1.050 V, <em>J</em><small><sub>SC</sub></small> of 9.32 mA cm<small><sup>−2</sup></small>, FF of 45.33%, and a PCE of 4.44%, outperforming the DTBT-IC-based counterpart. Morphological and structural analyses revealed that PDTBT-Br-T exhibits more ordered backbone stacking and defined phase separation, enhancing exciton dissociation and charge transport, and suppressing energy loss. The study highlights that polymerization of DTBT-IC enhances intermolecular packing and microstructure, offering critical design insights for efficient all-PSCs.</p>\",\"PeriodicalId\":95,\"journal\":{\"name\":\"New Journal of Chemistry\",\"volume\":\" 37\",\"pages\":\" 16382-16389\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Journal of Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/nj/d5nj02939b\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nj/d5nj02939b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

近年来,聚合小分子受体(polymerized small molecule acceptors, psma)作为一种很有前景的策略出现,它将小分子的强吸收性与聚合物的成膜能力和稳定性相结合,从而大大提高了全聚合物太阳能电池(all-polymer solar cell, pscs)的性能。我们以dbt为核心,二噻吩为π桥,IC为末端基团,设计了一种非熔合受体pdtbt -IC及其聚合物对应物PDTBT-Br-T。采用Stille偶联法合成PDTBT-Br-T,并以PM6为供体制备有机太阳能电池。基于pdtbt - br的器件具有优异的性能,VOC为1.050 V, JSC为9.32 mA cm−2,FF为45.33%,PCE为4.44%,优于基于pdtbt - ic的器件。形态学和结构分析表明,PDTBT-Br-T具有更有序的主链堆叠和明确的相分离,增强激子解离和电荷输运,抑制能量损失。该研究强调,DTBT-IC的聚合增强了分子间的填充和微观结构,为高效的全聚酰亚胺材料的设计提供了关键的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Synthesis of dithieno[3,2-b:2′,3′-d]benzo[1,2-c][1,2,5]thiadiazole-cored polymerized small-molecule acceptors with ordered backbone stacking and their application in all-polymer solar cells

Synthesis of dithieno[3,2-b:2′,3′-d]benzo[1,2-c][1,2,5]thiadiazole-cored polymerized small-molecule acceptors with ordered backbone stacking and their application in all-polymer solar cells

In recent years, polymerized small molecule acceptors (PSMAs) have emerged as a promising strategy that combines the strong absorption of small molecules with the film-forming ability and stability of polymers, thereby greatly boosting the performance of all-polymer solar cells (all-PSCs). We designed a non-fused acceptor, DTBT-IC, and its polymeric counterpart, PDTBT-Br-T, by selecting DTBT as the core, bithiophene as the π-bridge, and IC as the terminal group. PDTBT-Br-T was synthesized via Stille coupling and used with PM6 as the donor to fabricate organic solar cells. The PDTBT-Br-T-based device delivered superior performance, with a VOC of 1.050 V, JSC of 9.32 mA cm−2, FF of 45.33%, and a PCE of 4.44%, outperforming the DTBT-IC-based counterpart. Morphological and structural analyses revealed that PDTBT-Br-T exhibits more ordered backbone stacking and defined phase separation, enhancing exciton dissociation and charge transport, and suppressing energy loss. The study highlights that polymerization of DTBT-IC enhances intermolecular packing and microstructure, offering critical design insights for efficient all-PSCs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Journal of Chemistry
New Journal of Chemistry 化学-化学综合
CiteScore
5.30
自引率
6.10%
发文量
1832
审稿时长
2 months
期刊介绍: A journal for new directions in chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信