David Fernando Daza Urbano;Carlos Alberto Trujillo Solarte;Carlos Andrés Martos Ojeda
{"title":"Bh集和Costas立方","authors":"David Fernando Daza Urbano;Carlos Alberto Trujillo Solarte;Carlos Andrés Martos Ojeda","doi":"10.1109/TIT.2025.3591529","DOIUrl":null,"url":null,"abstract":"A Costas array is a permutation array in which the vectors joining pairs of 1’s are all distinct. Jedwab and Yen introduced Costas cubes, which are three-dimensional arrays that satisfy the condition that their three two-dimensional projections are Costas arrays. On the other hand, a subset <italic>A</i> in an additive group <italic>G</i> is a <inline-formula> <tex-math>$B_{h}$ </tex-math></inline-formula> set if all sums of the form <inline-formula> <tex-math>$a_{1} + a_{2} \\cdots + a_{h}$ </tex-math></inline-formula>, where <inline-formula> <tex-math>$a_{1}, a_{2} \\cdots, a_{h} \\in A$ </tex-math></inline-formula>, are different. In this paper, we present three new constructions of <inline-formula> <tex-math>$B_{h}$ </tex-math></inline-formula> sets for all <inline-formula> <tex-math>$h\\geq 3$ </tex-math></inline-formula>. Moreover, in the case <inline-formula> <tex-math>$h=3$ </tex-math></inline-formula>, we analyze the relationship of these sets with Costas cubes constructed by Jedwab and Yen, and determine which of these cubes are <inline-formula> <tex-math>$B_{3}$ </tex-math></inline-formula> sets.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"71 10","pages":"7735-7741"},"PeriodicalIF":2.9000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bh Sets and Costas Cubes\",\"authors\":\"David Fernando Daza Urbano;Carlos Alberto Trujillo Solarte;Carlos Andrés Martos Ojeda\",\"doi\":\"10.1109/TIT.2025.3591529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Costas array is a permutation array in which the vectors joining pairs of 1’s are all distinct. Jedwab and Yen introduced Costas cubes, which are three-dimensional arrays that satisfy the condition that their three two-dimensional projections are Costas arrays. On the other hand, a subset <italic>A</i> in an additive group <italic>G</i> is a <inline-formula> <tex-math>$B_{h}$ </tex-math></inline-formula> set if all sums of the form <inline-formula> <tex-math>$a_{1} + a_{2} \\\\cdots + a_{h}$ </tex-math></inline-formula>, where <inline-formula> <tex-math>$a_{1}, a_{2} \\\\cdots, a_{h} \\\\in A$ </tex-math></inline-formula>, are different. In this paper, we present three new constructions of <inline-formula> <tex-math>$B_{h}$ </tex-math></inline-formula> sets for all <inline-formula> <tex-math>$h\\\\geq 3$ </tex-math></inline-formula>. Moreover, in the case <inline-formula> <tex-math>$h=3$ </tex-math></inline-formula>, we analyze the relationship of these sets with Costas cubes constructed by Jedwab and Yen, and determine which of these cubes are <inline-formula> <tex-math>$B_{3}$ </tex-math></inline-formula> sets.\",\"PeriodicalId\":13494,\"journal\":{\"name\":\"IEEE Transactions on Information Theory\",\"volume\":\"71 10\",\"pages\":\"7735-7741\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Theory\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11088125/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11088125/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A Costas array is a permutation array in which the vectors joining pairs of 1’s are all distinct. Jedwab and Yen introduced Costas cubes, which are three-dimensional arrays that satisfy the condition that their three two-dimensional projections are Costas arrays. On the other hand, a subset A in an additive group G is a $B_{h}$ set if all sums of the form $a_{1} + a_{2} \cdots + a_{h}$ , where $a_{1}, a_{2} \cdots, a_{h} \in A$ , are different. In this paper, we present three new constructions of $B_{h}$ sets for all $h\geq 3$ . Moreover, in the case $h=3$ , we analyze the relationship of these sets with Costas cubes constructed by Jedwab and Yen, and determine which of these cubes are $B_{3}$ sets.
期刊介绍:
The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.