算法信息距离的性质

IF 2.9 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Marcus Hutter
{"title":"算法信息距离的性质","authors":"Marcus Hutter","doi":"10.1109/TIT.2025.3597092","DOIUrl":null,"url":null,"abstract":"The domain-independent universal Normalized Information Distance based on Kolmogorov complexity has been (in approximate form) successfully applied to a variety of difficult clustering problems. In this paper we investigate theoretical properties of the un-normalized algorithmic information distance <inline-formula> <tex-math>$d_{K}$ </tex-math></inline-formula>. The main question we are asking in this work is what properties this curious distance has, besides being a metric. We show that many (in)finite-dimensional spaces can(not) be isometrically scale-embedded into the space of finite strings with metric <inline-formula> <tex-math>$d_{K}$ </tex-math></inline-formula>. We also show that <inline-formula> <tex-math>$d_{K}$ </tex-math></inline-formula> is not an Euclidean distance, but any finite set of points in Euclidean space can be scale-embedded into <inline-formula> <tex-math>$(\\{0,1\\}^{*},d_{K})$ </tex-math></inline-formula>. A major contribution is the development of the necessary framework and tools for finding more (interesting) properties of <inline-formula> <tex-math>$d_{K}$ </tex-math></inline-formula> in future, and to state several open problems.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"71 10","pages":"7540-7554"},"PeriodicalIF":2.9000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Properties of Algorithmic Information Distance\",\"authors\":\"Marcus Hutter\",\"doi\":\"10.1109/TIT.2025.3597092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The domain-independent universal Normalized Information Distance based on Kolmogorov complexity has been (in approximate form) successfully applied to a variety of difficult clustering problems. In this paper we investigate theoretical properties of the un-normalized algorithmic information distance <inline-formula> <tex-math>$d_{K}$ </tex-math></inline-formula>. The main question we are asking in this work is what properties this curious distance has, besides being a metric. We show that many (in)finite-dimensional spaces can(not) be isometrically scale-embedded into the space of finite strings with metric <inline-formula> <tex-math>$d_{K}$ </tex-math></inline-formula>. We also show that <inline-formula> <tex-math>$d_{K}$ </tex-math></inline-formula> is not an Euclidean distance, but any finite set of points in Euclidean space can be scale-embedded into <inline-formula> <tex-math>$(\\\\{0,1\\\\}^{*},d_{K})$ </tex-math></inline-formula>. A major contribution is the development of the necessary framework and tools for finding more (interesting) properties of <inline-formula> <tex-math>$d_{K}$ </tex-math></inline-formula> in future, and to state several open problems.\",\"PeriodicalId\":13494,\"journal\":{\"name\":\"IEEE Transactions on Information Theory\",\"volume\":\"71 10\",\"pages\":\"7540-7554\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Theory\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11121567/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11121567/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

基于Kolmogorov复杂度的域无关的通用归一化信息距离已经(以近似形式)成功地应用于各种困难的聚类问题。本文研究了非归一化信息距离算法$d_{K}$的理论性质。在这项工作中,我们要问的主要问题是这个奇怪的距离除了是一个度规之外,还有什么性质。我们证明了许多有限维空间可以(不)等距尺度嵌入到度量为$d_{K}$的有限字符串空间中。我们还证明了$d_{K}$不是欧几里得距离,但欧几里得空间中的任何有限点集都可以尺度嵌入到$(\{0,1\}^{*},d_{K})$中。一个主要的贡献是开发了必要的框架和工具,以便在将来发现更多(有趣的)$d_{K}$的属性,并说明几个开放的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Properties of Algorithmic Information Distance
The domain-independent universal Normalized Information Distance based on Kolmogorov complexity has been (in approximate form) successfully applied to a variety of difficult clustering problems. In this paper we investigate theoretical properties of the un-normalized algorithmic information distance $d_{K}$ . The main question we are asking in this work is what properties this curious distance has, besides being a metric. We show that many (in)finite-dimensional spaces can(not) be isometrically scale-embedded into the space of finite strings with metric $d_{K}$ . We also show that $d_{K}$ is not an Euclidean distance, but any finite set of points in Euclidean space can be scale-embedded into $(\{0,1\}^{*},d_{K})$ . A major contribution is the development of the necessary framework and tools for finding more (interesting) properties of $d_{K}$ in future, and to state several open problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信