环面上动力学导数非线性Schrödinger方程的规范变换

IF 2.3 2区 数学 Q1 MATHEMATICS
Nobu Kishimoto , Yoshio Tsutsumi
{"title":"环面上动力学导数非线性Schrödinger方程的规范变换","authors":"Nobu Kishimoto ,&nbsp;Yoshio Tsutsumi","doi":"10.1016/j.jde.2025.113792","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the kinetic derivative nonlinear Schrödinger equation, which is a one-dimensional nonlinear Schrödinger equation with a cubic derivative nonlinear term containing the Hilbert transformation. In our previous work, we proved small-data global well-posedness of the Cauchy problem on the torus in Sobolev space <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup></math></span> for <span><math><mi>s</mi><mo>&gt;</mo><mn>1</mn><mo>/</mo><mn>2</mn></math></span> by combining the Fourier restriction norm method with the parabolic smoothing effect, which is available in the periodic setting. In this article, we improve the regularity range to <span><math><mi>s</mi><mo>&gt;</mo><mn>1</mn><mo>/</mo><mn>4</mn></math></span> for the global well-posedness by constructing an effective gauge transformation. Moreover, we remove the smallness assumption by making use of the dissipative nature of the equation.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"453 ","pages":"Article 113792"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gauge transformation for the kinetic derivative nonlinear Schrödinger equation on the torus\",\"authors\":\"Nobu Kishimoto ,&nbsp;Yoshio Tsutsumi\",\"doi\":\"10.1016/j.jde.2025.113792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider the kinetic derivative nonlinear Schrödinger equation, which is a one-dimensional nonlinear Schrödinger equation with a cubic derivative nonlinear term containing the Hilbert transformation. In our previous work, we proved small-data global well-posedness of the Cauchy problem on the torus in Sobolev space <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup></math></span> for <span><math><mi>s</mi><mo>&gt;</mo><mn>1</mn><mo>/</mo><mn>2</mn></math></span> by combining the Fourier restriction norm method with the parabolic smoothing effect, which is available in the periodic setting. In this article, we improve the regularity range to <span><math><mi>s</mi><mo>&gt;</mo><mn>1</mn><mo>/</mo><mn>4</mn></math></span> for the global well-posedness by constructing an effective gauge transformation. Moreover, we remove the smallness assumption by making use of the dissipative nature of the equation.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"453 \",\"pages\":\"Article 113792\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625008198\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625008198","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑动力学导数非线性Schrödinger方程,它是一个一维非线性Schrödinger方程,其中包含Hilbert变换的三次导数非线性项。在之前的工作中,我们将Fourier限制范数方法与抛物平滑效应相结合,证明了Sobolev空间Hs中s>;1/2环面上Cauchy问题的小数据全局适定性,该方法在周期设置下是可行的。在本文中,我们通过构造一个有效的规范变换,将全局适定性的正则范围提高到s>;1/4。此外,我们通过利用方程的耗散性质消除了小的假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gauge transformation for the kinetic derivative nonlinear Schrödinger equation on the torus
We consider the kinetic derivative nonlinear Schrödinger equation, which is a one-dimensional nonlinear Schrödinger equation with a cubic derivative nonlinear term containing the Hilbert transformation. In our previous work, we proved small-data global well-posedness of the Cauchy problem on the torus in Sobolev space Hs for s>1/2 by combining the Fourier restriction norm method with the parabolic smoothing effect, which is available in the periodic setting. In this article, we improve the regularity range to s>1/4 for the global well-posedness by constructing an effective gauge transformation. Moreover, we remove the smallness assumption by making use of the dissipative nature of the equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信