扩散-粘性波动方程的hp型间断Galerkin时步格式

IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED
Min Zhang , Zhaonan Dong , Wenjing Yan
{"title":"扩散-粘性波动方程的hp型间断Galerkin时步格式","authors":"Min Zhang ,&nbsp;Zhaonan Dong ,&nbsp;Wenjing Yan","doi":"10.1016/j.camwa.2025.09.021","DOIUrl":null,"url":null,"abstract":"<div><div>This work introduces a fully discrete scheme for the diffusion-viscous wave equation (DVWe) in the second-order formulation, combining <em>hp</em>-DG time-stepping schemes with conforming finite element methods (FEM). Two major theoretical contributions are presented: (1) <em>hp</em>-version a priori error estimates in both the energy-norm and DG-norm, which are optimal in the spatial mesh size <em>h</em>, temporal step size <em>τ</em>, and temporal polynomial order <em>q</em>, yet suboptimal by one order in the spatial polynomial order <em>p</em>. Furthermore, for solutions exhibiting weak singularities in time, exponential convergence in terms of the total number of temporal degrees of freedom is proven using the <em>hp</em>-refinement strategy. (2) An energy decay estimate that offers explicit bounds involving the model parameters, discretization parameters, and the Poincaré inequality constant. A series of numerical experiments are presented to validate the practical performance of the proposed approach.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"200 ","pages":"Pages 145-166"},"PeriodicalIF":2.5000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"hp-version discontinuous Galerkin time-stepping schemes for diffusive-viscous wave equation\",\"authors\":\"Min Zhang ,&nbsp;Zhaonan Dong ,&nbsp;Wenjing Yan\",\"doi\":\"10.1016/j.camwa.2025.09.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work introduces a fully discrete scheme for the diffusion-viscous wave equation (DVWe) in the second-order formulation, combining <em>hp</em>-DG time-stepping schemes with conforming finite element methods (FEM). Two major theoretical contributions are presented: (1) <em>hp</em>-version a priori error estimates in both the energy-norm and DG-norm, which are optimal in the spatial mesh size <em>h</em>, temporal step size <em>τ</em>, and temporal polynomial order <em>q</em>, yet suboptimal by one order in the spatial polynomial order <em>p</em>. Furthermore, for solutions exhibiting weak singularities in time, exponential convergence in terms of the total number of temporal degrees of freedom is proven using the <em>hp</em>-refinement strategy. (2) An energy decay estimate that offers explicit bounds involving the model parameters, discretization parameters, and the Poincaré inequality constant. A series of numerical experiments are presented to validate the practical performance of the proposed approach.</div></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":\"200 \",\"pages\":\"Pages 145-166\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S089812212500402X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089812212500402X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文将hp-DG时间步进格式与符合的有限元方法相结合,引入了二阶扩散-粘性波动方程(DVWe)的全离散格式。提出了两个主要的理论贡献:(1)hp-版本的能量范数和dg -范数的先验误差估计,在空间网格大小h、时间步长τ和时间多项式阶数q上是最优的,但在空间多项式阶数p上是次优的。此外,对于在时间上表现出弱奇点的解,使用hp-改进策略证明了在时间自由度总数方面的指数收敛性。(2)提供涉及模型参数、离散化参数和poincar不等式常数的显式边界的能量衰减估计。通过一系列数值实验验证了该方法的实际性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
hp-version discontinuous Galerkin time-stepping schemes for diffusive-viscous wave equation
This work introduces a fully discrete scheme for the diffusion-viscous wave equation (DVWe) in the second-order formulation, combining hp-DG time-stepping schemes with conforming finite element methods (FEM). Two major theoretical contributions are presented: (1) hp-version a priori error estimates in both the energy-norm and DG-norm, which are optimal in the spatial mesh size h, temporal step size τ, and temporal polynomial order q, yet suboptimal by one order in the spatial polynomial order p. Furthermore, for solutions exhibiting weak singularities in time, exponential convergence in terms of the total number of temporal degrees of freedom is proven using the hp-refinement strategy. (2) An energy decay estimate that offers explicit bounds involving the model parameters, discretization parameters, and the Poincaré inequality constant. A series of numerical experiments are presented to validate the practical performance of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信