co - mof缺失接头缺陷的设计及可调ni掺杂剂工程以提高超级电容器的速率性能和容量

IF 9.2 2区 工程技术 Q1 ENERGY & FUELS
Yingli Yang , Hailiang Zhang , Xiaoxia Jia , Guoli Zhang , Gang Li , Kaiying Wang
{"title":"co - mof缺失接头缺陷的设计及可调ni掺杂剂工程以提高超级电容器的速率性能和容量","authors":"Yingli Yang ,&nbsp;Hailiang Zhang ,&nbsp;Xiaoxia Jia ,&nbsp;Guoli Zhang ,&nbsp;Gang Li ,&nbsp;Kaiying Wang","doi":"10.1016/j.susmat.2025.e01661","DOIUrl":null,"url":null,"abstract":"<div><div>Metal-organic frameworks (MOFs) have emerged as promising supercapacitor electrode materials due to their structural tunability and high density of electroactive sites. However, intrinsically low electrical conductivity fundamentally constrains their electrochemical performance. To overcome this limitation, we implement a defect engineering strategy, constructing missing-linker defects and Ni dopants within 2D CoNi-BTC/IPA nanosheets via one-pot solvothermal synthesis. This synergistic strategy simultaneously modulates the electronic structure of MOFs while generating supplementary electroactive sites, thereby enhancing charge transfer kinetics and specific capacity—collectively enabling exceptional electrochemical performance. The optimized architecture achieves a high specific capacity of 1220.4 F g<sup>−1</sup> at a current density of 0.5 A g<sup>−1</sup>, representing a five-fold improvement compared to Co-BTC (226.9 F g<sup>−1</sup> at 0.5 A g<sup>−1</sup>). Even with an increase in current density from 0.5 to 10 A g<sup>−1</sup>, it retains an excellent capacity retention rate of 96.8 %. The CoNi-BTC/IPA//AC hybrid supercapacitor device showcases a power density of 687.7 W kg<sup>−1</sup> alongside an energy density of 50.4 Wh kg<sup>−1</sup>. Furthermore, it maintains 80 % capacity retention after undergoing 8000 cycles of charging and discharging.</div></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":"46 ","pages":"Article e01661"},"PeriodicalIF":9.2000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of missing linker defects and tuning Ni-dopants engineering for Co-MOFs to boost rate capability and capacity in supercapacitor\",\"authors\":\"Yingli Yang ,&nbsp;Hailiang Zhang ,&nbsp;Xiaoxia Jia ,&nbsp;Guoli Zhang ,&nbsp;Gang Li ,&nbsp;Kaiying Wang\",\"doi\":\"10.1016/j.susmat.2025.e01661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Metal-organic frameworks (MOFs) have emerged as promising supercapacitor electrode materials due to their structural tunability and high density of electroactive sites. However, intrinsically low electrical conductivity fundamentally constrains their electrochemical performance. To overcome this limitation, we implement a defect engineering strategy, constructing missing-linker defects and Ni dopants within 2D CoNi-BTC/IPA nanosheets via one-pot solvothermal synthesis. This synergistic strategy simultaneously modulates the electronic structure of MOFs while generating supplementary electroactive sites, thereby enhancing charge transfer kinetics and specific capacity—collectively enabling exceptional electrochemical performance. The optimized architecture achieves a high specific capacity of 1220.4 F g<sup>−1</sup> at a current density of 0.5 A g<sup>−1</sup>, representing a five-fold improvement compared to Co-BTC (226.9 F g<sup>−1</sup> at 0.5 A g<sup>−1</sup>). Even with an increase in current density from 0.5 to 10 A g<sup>−1</sup>, it retains an excellent capacity retention rate of 96.8 %. The CoNi-BTC/IPA//AC hybrid supercapacitor device showcases a power density of 687.7 W kg<sup>−1</sup> alongside an energy density of 50.4 Wh kg<sup>−1</sup>. Furthermore, it maintains 80 % capacity retention after undergoing 8000 cycles of charging and discharging.</div></div>\",\"PeriodicalId\":22097,\"journal\":{\"name\":\"Sustainable Materials and Technologies\",\"volume\":\"46 \",\"pages\":\"Article e01661\"},\"PeriodicalIF\":9.2000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Materials and Technologies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214993725004294\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Materials and Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214993725004294","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

金属有机骨架(MOFs)由于其结构的可调性和电活性位点的高密度而成为极具发展前景的超级电容器电极材料。然而,固有的低导电性从根本上限制了它们的电化学性能。为了克服这一限制,我们实施了缺陷工程策略,通过一锅溶剂热合成在二维CoNi-BTC/IPA纳米片中构建缺失连接体缺陷和Ni掺杂剂。这种协同策略在产生补充电活性位点的同时调节mof的电子结构,从而增强电荷转移动力学和比容量,从而实现卓越的电化学性能。优化后的结构在0.5 a g−1电流密度下实现了1220.4 F g−1的高比容量,与Co-BTC (226.9 F g−1电流密度为0.5 a g−1)相比,提高了5倍。即使电流密度从0.5 A g−1增加到10 A g−1,也能保持96.8%的优异容量保持率。CoNi-BTC/IPA/ AC混合超级电容器器件的功率密度为687.7 W kg - 1,能量密度为50.4 Wh kg - 1。此外,经过8000次充放电循环后,它保持80%的容量保持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of missing linker defects and tuning Ni-dopants engineering for Co-MOFs to boost rate capability and capacity in supercapacitor
Metal-organic frameworks (MOFs) have emerged as promising supercapacitor electrode materials due to their structural tunability and high density of electroactive sites. However, intrinsically low electrical conductivity fundamentally constrains their electrochemical performance. To overcome this limitation, we implement a defect engineering strategy, constructing missing-linker defects and Ni dopants within 2D CoNi-BTC/IPA nanosheets via one-pot solvothermal synthesis. This synergistic strategy simultaneously modulates the electronic structure of MOFs while generating supplementary electroactive sites, thereby enhancing charge transfer kinetics and specific capacity—collectively enabling exceptional electrochemical performance. The optimized architecture achieves a high specific capacity of 1220.4 F g−1 at a current density of 0.5 A g−1, representing a five-fold improvement compared to Co-BTC (226.9 F g−1 at 0.5 A g−1). Even with an increase in current density from 0.5 to 10 A g−1, it retains an excellent capacity retention rate of 96.8 %. The CoNi-BTC/IPA//AC hybrid supercapacitor device showcases a power density of 687.7 W kg−1 alongside an energy density of 50.4 Wh kg−1. Furthermore, it maintains 80 % capacity retention after undergoing 8000 cycles of charging and discharging.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sustainable Materials and Technologies
Sustainable Materials and Technologies Energy-Renewable Energy, Sustainability and the Environment
CiteScore
13.40
自引率
4.20%
发文量
158
审稿时长
45 days
期刊介绍: Sustainable Materials and Technologies (SM&T), an international, cross-disciplinary, fully open access journal published by Elsevier, focuses on original full-length research articles and reviews. It covers applied or fundamental science of nano-, micro-, meso-, and macro-scale aspects of materials and technologies for sustainable development. SM&T gives special attention to contributions that bridge the knowledge gap between materials and system designs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信