{"title":"具有第三大可能属q≡0(mod3)的极大函数域的Weierstrass半群和自同构群","authors":"Peter Beelen , Maria Montanucci , Lara Vicino","doi":"10.1016/j.ffa.2025.102729","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we explicitly determine the Weierstrass semigroup at any place and the full automorphism group of a known <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span>-maximal function field <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>, which is realised as a Galois subfield of the Hermitian function field and has the third largest genus, for <span><math><mi>q</mi><mo>≡</mo><mn>0</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>3</mn><mo>)</mo></math></span>. This completes the work contained in <span><span>[3]</span></span> and <span><span>[4]</span></span>, where the cases <span><math><mi>q</mi><mo>≡</mo><mn>2</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>3</mn><mo>)</mo></math></span> and <span><math><mi>q</mi><mo>≡</mo><mn>1</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>3</mn><mo>)</mo></math></span>, respectively, were studied. Like for these other two cases, the problem of determining the uniqueness of the function field <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>, with respect to the value of its genus, is still open. The knowledge of the Weierstrass semigroups may be instrumental in finding a solution to this problem, as it happened to be the case for the function fields with the largest <span><span>[11]</span></span> and second largest genera <span><span>[1]</span></span>, <span><span>[7]</span></span>. Similarly to what observed in <span><span>[3]</span></span> and <span><span>[4]</span></span>, also in the case of <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> we find that many different types of Weierstrass semigroups appear, and that the set of Weierstrass places contains also non-<span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span>-rational places. We also determine <span><math><mrow><mi>Aut</mi></mrow><mo>(</mo><msub><mrow><mi>Z</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo></math></span>, which turns out to be exactly the automorphism group inherited from the Hermitian function field, apart from the case <span><math><mi>q</mi><mo>=</mo><mn>3</mn></math></span>.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"110 ","pages":"Article 102729"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weierstrass semigroups and automorphism group of a maximal function field with the third largest possible genus, q≡0(mod3)\",\"authors\":\"Peter Beelen , Maria Montanucci , Lara Vicino\",\"doi\":\"10.1016/j.ffa.2025.102729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this article, we explicitly determine the Weierstrass semigroup at any place and the full automorphism group of a known <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span>-maximal function field <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>, which is realised as a Galois subfield of the Hermitian function field and has the third largest genus, for <span><math><mi>q</mi><mo>≡</mo><mn>0</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>3</mn><mo>)</mo></math></span>. This completes the work contained in <span><span>[3]</span></span> and <span><span>[4]</span></span>, where the cases <span><math><mi>q</mi><mo>≡</mo><mn>2</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>3</mn><mo>)</mo></math></span> and <span><math><mi>q</mi><mo>≡</mo><mn>1</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>3</mn><mo>)</mo></math></span>, respectively, were studied. Like for these other two cases, the problem of determining the uniqueness of the function field <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>, with respect to the value of its genus, is still open. The knowledge of the Weierstrass semigroups may be instrumental in finding a solution to this problem, as it happened to be the case for the function fields with the largest <span><span>[11]</span></span> and second largest genera <span><span>[1]</span></span>, <span><span>[7]</span></span>. Similarly to what observed in <span><span>[3]</span></span> and <span><span>[4]</span></span>, also in the case of <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> we find that many different types of Weierstrass semigroups appear, and that the set of Weierstrass places contains also non-<span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span>-rational places. We also determine <span><math><mrow><mi>Aut</mi></mrow><mo>(</mo><msub><mrow><mi>Z</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo></math></span>, which turns out to be exactly the automorphism group inherited from the Hermitian function field, apart from the case <span><math><mi>q</mi><mo>=</mo><mn>3</mn></math></span>.</div></div>\",\"PeriodicalId\":50446,\"journal\":{\"name\":\"Finite Fields and Their Applications\",\"volume\":\"110 \",\"pages\":\"Article 102729\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Fields and Their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1071579725001595\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579725001595","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Weierstrass semigroups and automorphism group of a maximal function field with the third largest possible genus, q≡0(mod3)
In this article, we explicitly determine the Weierstrass semigroup at any place and the full automorphism group of a known -maximal function field , which is realised as a Galois subfield of the Hermitian function field and has the third largest genus, for . This completes the work contained in [3] and [4], where the cases and , respectively, were studied. Like for these other two cases, the problem of determining the uniqueness of the function field , with respect to the value of its genus, is still open. The knowledge of the Weierstrass semigroups may be instrumental in finding a solution to this problem, as it happened to be the case for the function fields with the largest [11] and second largest genera [1], [7]. Similarly to what observed in [3] and [4], also in the case of we find that many different types of Weierstrass semigroups appear, and that the set of Weierstrass places contains also non--rational places. We also determine , which turns out to be exactly the automorphism group inherited from the Hermitian function field, apart from the case .
期刊介绍:
Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering.
For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods.
The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.