具有第三大可能属q≡0(mod3)的极大函数域的Weierstrass半群和自同构群

IF 1.2 3区 数学 Q1 MATHEMATICS
Peter Beelen , Maria Montanucci , Lara Vicino
{"title":"具有第三大可能属q≡0(mod3)的极大函数域的Weierstrass半群和自同构群","authors":"Peter Beelen ,&nbsp;Maria Montanucci ,&nbsp;Lara Vicino","doi":"10.1016/j.ffa.2025.102729","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we explicitly determine the Weierstrass semigroup at any place and the full automorphism group of a known <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span>-maximal function field <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>, which is realised as a Galois subfield of the Hermitian function field and has the third largest genus, for <span><math><mi>q</mi><mo>≡</mo><mn>0</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>3</mn><mo>)</mo></math></span>. This completes the work contained in <span><span>[3]</span></span> and <span><span>[4]</span></span>, where the cases <span><math><mi>q</mi><mo>≡</mo><mn>2</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>3</mn><mo>)</mo></math></span> and <span><math><mi>q</mi><mo>≡</mo><mn>1</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>3</mn><mo>)</mo></math></span>, respectively, were studied. Like for these other two cases, the problem of determining the uniqueness of the function field <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>, with respect to the value of its genus, is still open. The knowledge of the Weierstrass semigroups may be instrumental in finding a solution to this problem, as it happened to be the case for the function fields with the largest <span><span>[11]</span></span> and second largest genera <span><span>[1]</span></span>, <span><span>[7]</span></span>. Similarly to what observed in <span><span>[3]</span></span> and <span><span>[4]</span></span>, also in the case of <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> we find that many different types of Weierstrass semigroups appear, and that the set of Weierstrass places contains also non-<span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span>-rational places. We also determine <span><math><mrow><mi>Aut</mi></mrow><mo>(</mo><msub><mrow><mi>Z</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo></math></span>, which turns out to be exactly the automorphism group inherited from the Hermitian function field, apart from the case <span><math><mi>q</mi><mo>=</mo><mn>3</mn></math></span>.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"110 ","pages":"Article 102729"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weierstrass semigroups and automorphism group of a maximal function field with the third largest possible genus, q≡0(mod3)\",\"authors\":\"Peter Beelen ,&nbsp;Maria Montanucci ,&nbsp;Lara Vicino\",\"doi\":\"10.1016/j.ffa.2025.102729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this article, we explicitly determine the Weierstrass semigroup at any place and the full automorphism group of a known <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span>-maximal function field <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>, which is realised as a Galois subfield of the Hermitian function field and has the third largest genus, for <span><math><mi>q</mi><mo>≡</mo><mn>0</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>3</mn><mo>)</mo></math></span>. This completes the work contained in <span><span>[3]</span></span> and <span><span>[4]</span></span>, where the cases <span><math><mi>q</mi><mo>≡</mo><mn>2</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>3</mn><mo>)</mo></math></span> and <span><math><mi>q</mi><mo>≡</mo><mn>1</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>3</mn><mo>)</mo></math></span>, respectively, were studied. Like for these other two cases, the problem of determining the uniqueness of the function field <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>, with respect to the value of its genus, is still open. The knowledge of the Weierstrass semigroups may be instrumental in finding a solution to this problem, as it happened to be the case for the function fields with the largest <span><span>[11]</span></span> and second largest genera <span><span>[1]</span></span>, <span><span>[7]</span></span>. Similarly to what observed in <span><span>[3]</span></span> and <span><span>[4]</span></span>, also in the case of <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> we find that many different types of Weierstrass semigroups appear, and that the set of Weierstrass places contains also non-<span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span>-rational places. We also determine <span><math><mrow><mi>Aut</mi></mrow><mo>(</mo><msub><mrow><mi>Z</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo></math></span>, which turns out to be exactly the automorphism group inherited from the Hermitian function field, apart from the case <span><math><mi>q</mi><mo>=</mo><mn>3</mn></math></span>.</div></div>\",\"PeriodicalId\":50446,\"journal\":{\"name\":\"Finite Fields and Their Applications\",\"volume\":\"110 \",\"pages\":\"Article 102729\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Fields and Their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1071579725001595\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579725001595","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在这篇文章中,我们明确地确定了在任何地方的Weierstrass半群和已知的fq2 -极大函数域Z3的完全自同构群,它被实现为hermite函数域的伽罗瓦子域,并且具有第三大属,对于q≡0(mod3)。这就完成了[3]和[4]中所包含的工作,其中分别研究了q≡2(mod3)和q≡1(mod3)的情况。就像其他两种情况一样,确定函数域Z3的唯一性的问题,关于它的属的值,仍然是开放的。Weierstrass半群的知识可能有助于找到这个问题的解决方案,因为它恰好是具有最大[11]和第二大属[1],[7]的函数域的情况。与[3]和[4]的情况类似,在Z3的情况下,我们发现出现了许多不同类型的Weierstrass半群,并且Weierstrass位的集合也包含非fq2 -有理位。我们还确定了Aut(Z3),除了q=3的情况外,它就是继承自厄米函数场的自同构群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weierstrass semigroups and automorphism group of a maximal function field with the third largest possible genus, q≡0(mod3)
In this article, we explicitly determine the Weierstrass semigroup at any place and the full automorphism group of a known Fq2-maximal function field Z3, which is realised as a Galois subfield of the Hermitian function field and has the third largest genus, for q0(mod3). This completes the work contained in [3] and [4], where the cases q2(mod3) and q1(mod3), respectively, were studied. Like for these other two cases, the problem of determining the uniqueness of the function field Z3, with respect to the value of its genus, is still open. The knowledge of the Weierstrass semigroups may be instrumental in finding a solution to this problem, as it happened to be the case for the function fields with the largest [11] and second largest genera [1], [7]. Similarly to what observed in [3] and [4], also in the case of Z3 we find that many different types of Weierstrass semigroups appear, and that the set of Weierstrass places contains also non-Fq2-rational places. We also determine Aut(Z3), which turns out to be exactly the automorphism group inherited from the Hermitian function field, apart from the case q=3.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
20.00%
发文量
133
审稿时长
6-12 weeks
期刊介绍: Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering. For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods. The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信