{"title":"Boussinesq方程中某些k-演化方程的Strauss指数","authors":"Marcello D'Abbicco, Antonio Lagioia","doi":"10.1016/j.jmaa.2025.130077","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we prove the existence of global small data solutions to the evolution equation<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi><mi>t</mi></mrow></msub><mo>+</mo><mi>A</mi><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi><mi>t</mi></mrow></msub><mo>+</mo><mi>A</mi><mi>v</mi><mo>+</mo><msup><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>v</mi><mo>=</mo><mi>A</mi><mi>f</mi><mo>(</mo><mi>v</mi><mo>)</mo><mo>,</mo></mtd><mtd><mi>t</mi><mo>≥</mo><mn>0</mn><mo>,</mo><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd><mi>v</mi><mo>(</mo><mn>0</mn><mo>,</mo><mi>x</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo><mspace></mspace><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>(</mo><mn>0</mn><mo>,</mo><mi>x</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where <span><math><mi>A</mi><mo>=</mo><msup><mrow><mi>F</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>a</mi><msup><mrow><mo>(</mo><mi>ξ</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> with <span><math><mi>a</mi><mo>(</mo><mi>ξ</mi><mo>)</mo></math></span> homogeneous of order <em>k</em>, and <span><math><mi>f</mi><mo>(</mo><mi>v</mi><mo>)</mo><mo>=</mo><mo>|</mo><mi>v</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>α</mi></mrow></msup></math></span> or it is a more general power nonlinearity. We prove our result for <span><math><mi>α</mi><mo>></mo><mi>γ</mi><mo>(</mo><mi>r</mi><mo>)</mo></math></span>, where <em>γ</em> is the Strauss exponent for nonlinear equations, and r is the rank of the Hessian of <span><math><mi>a</mi><mo>(</mo><mi>ξ</mi><mo>)</mo></math></span>. We also consider the damped case, obtained adding <span><math><mo>+</mo><mi>A</mi><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> to the left-hand side of the equation. We show that the effect of the dissipation is very weak, compared to the dispersion, however, it is sufficient to lower the existence exponent to some smaller, modified, Strauss exponent.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"555 2","pages":"Article 130077"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Strauss exponent for some k-evolution equation in the class of Boussinesq equations\",\"authors\":\"Marcello D'Abbicco, Antonio Lagioia\",\"doi\":\"10.1016/j.jmaa.2025.130077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we prove the existence of global small data solutions to the evolution equation<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi><mi>t</mi></mrow></msub><mo>+</mo><mi>A</mi><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi><mi>t</mi></mrow></msub><mo>+</mo><mi>A</mi><mi>v</mi><mo>+</mo><msup><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>v</mi><mo>=</mo><mi>A</mi><mi>f</mi><mo>(</mo><mi>v</mi><mo>)</mo><mo>,</mo></mtd><mtd><mi>t</mi><mo>≥</mo><mn>0</mn><mo>,</mo><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd><mi>v</mi><mo>(</mo><mn>0</mn><mo>,</mo><mi>x</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo><mspace></mspace><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>(</mo><mn>0</mn><mo>,</mo><mi>x</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where <span><math><mi>A</mi><mo>=</mo><msup><mrow><mi>F</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>a</mi><msup><mrow><mo>(</mo><mi>ξ</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> with <span><math><mi>a</mi><mo>(</mo><mi>ξ</mi><mo>)</mo></math></span> homogeneous of order <em>k</em>, and <span><math><mi>f</mi><mo>(</mo><mi>v</mi><mo>)</mo><mo>=</mo><mo>|</mo><mi>v</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>α</mi></mrow></msup></math></span> or it is a more general power nonlinearity. We prove our result for <span><math><mi>α</mi><mo>></mo><mi>γ</mi><mo>(</mo><mi>r</mi><mo>)</mo></math></span>, where <em>γ</em> is the Strauss exponent for nonlinear equations, and r is the rank of the Hessian of <span><math><mi>a</mi><mo>(</mo><mi>ξ</mi><mo>)</mo></math></span>. We also consider the damped case, obtained adding <span><math><mo>+</mo><mi>A</mi><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> to the left-hand side of the equation. We show that the effect of the dissipation is very weak, compared to the dispersion, however, it is sufficient to lower the existence exponent to some smaller, modified, Strauss exponent.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"555 2\",\"pages\":\"Article 130077\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25008583\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25008583","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The Strauss exponent for some k-evolution equation in the class of Boussinesq equations
In this paper, we prove the existence of global small data solutions to the evolution equation where with homogeneous of order k, and or it is a more general power nonlinearity. We prove our result for , where γ is the Strauss exponent for nonlinear equations, and r is the rank of the Hessian of . We also consider the damped case, obtained adding to the left-hand side of the equation. We show that the effect of the dissipation is very weak, compared to the dispersion, however, it is sufficient to lower the existence exponent to some smaller, modified, Strauss exponent.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.