求解二维Hammerstein积分方程的超收敛方法

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED
M. Sennour , D. Sbibih , M. Tahrichi
{"title":"求解二维Hammerstein积分方程的超收敛方法","authors":"M. Sennour ,&nbsp;D. Sbibih ,&nbsp;M. Tahrichi","doi":"10.1016/j.amc.2025.129737","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we introduce the superconvergent degenerate kernel method and the superconvergent Nyström method for the numerical solution of two-dimensional Hammerstein integral equations of the second kind. By employing piecewise polynomial interpolation of degree <span><math><mi>r</mi></math></span>, we prove that, under symmetry conditions on both the triangulation and the interpolation nodes, convergence orders of <span><math><mrow><mn>2</mn><mi>r</mi><mo>+</mo><mn>3</mn></mrow></math></span> and <span><math><mrow><mn>2</mn><mi>r</mi><mo>+</mo><mn>4</mn></mrow></math></span> are achieved for the approximate solutions and their iterated versions, respectively. Furthermore, we discuss computational aspects related to the construction of the corresponding nonlinear systems, and we present numerical examples to illustrate the theoretical results obtained.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"511 ","pages":"Article 129737"},"PeriodicalIF":3.4000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Superconvergent methods for solving two-dimensional Hammerstein integral equations\",\"authors\":\"M. Sennour ,&nbsp;D. Sbibih ,&nbsp;M. Tahrichi\",\"doi\":\"10.1016/j.amc.2025.129737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we introduce the superconvergent degenerate kernel method and the superconvergent Nyström method for the numerical solution of two-dimensional Hammerstein integral equations of the second kind. By employing piecewise polynomial interpolation of degree <span><math><mi>r</mi></math></span>, we prove that, under symmetry conditions on both the triangulation and the interpolation nodes, convergence orders of <span><math><mrow><mn>2</mn><mi>r</mi><mo>+</mo><mn>3</mn></mrow></math></span> and <span><math><mrow><mn>2</mn><mi>r</mi><mo>+</mo><mn>4</mn></mrow></math></span> are achieved for the approximate solutions and their iterated versions, respectively. Furthermore, we discuss computational aspects related to the construction of the corresponding nonlinear systems, and we present numerical examples to illustrate the theoretical results obtained.</div></div>\",\"PeriodicalId\":55496,\"journal\":{\"name\":\"Applied Mathematics and Computation\",\"volume\":\"511 \",\"pages\":\"Article 129737\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S009630032500462X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009630032500462X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了二维第二类Hammerstein积分方程数值解的超收敛退化核方法和超收敛Nyström方法。利用r次分段多项式插值,证明了在三角剖分节点和插值节点均对称的条件下,近似解及其迭代版本的收敛阶分别为2r+3和2r+4。此外,我们讨论了与相应的非线性系统的构造有关的计算方面,并给出了数值例子来说明所得到的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Superconvergent methods for solving two-dimensional Hammerstein integral equations
In this paper, we introduce the superconvergent degenerate kernel method and the superconvergent Nyström method for the numerical solution of two-dimensional Hammerstein integral equations of the second kind. By employing piecewise polynomial interpolation of degree r, we prove that, under symmetry conditions on both the triangulation and the interpolation nodes, convergence orders of 2r+3 and 2r+4 are achieved for the approximate solutions and their iterated versions, respectively. Furthermore, we discuss computational aspects related to the construction of the corresponding nonlinear systems, and we present numerical examples to illustrate the theoretical results obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信