Fariba Garkani Nejad , Hadi Beitollahi , Iran Sheikhshoaie
{"title":"pamam功能化NH2-MCM-41修饰玻碳电极溶出伏安法定量测定水样中的Cu (II","authors":"Fariba Garkani Nejad , Hadi Beitollahi , Iran Sheikhshoaie","doi":"10.1016/j.elecom.2025.108047","DOIUrl":null,"url":null,"abstract":"<div><div>Copper ions act as essential metal ions in various physiological processes, but their excessive accumulation can cause toxicity and severe risks to human health and the environment. Hence, the sensitive and accurate determination of copper levels in water samples is of great significance for public health protection and environmental monitoring. In this study, a new strategy was proposed for the determination of Cu (II) ions in the water samples based on polyamidoamine dendrimer-functionalized NH<sub>2</sub>-mesoporous silica (PAMAM-functionalized NH<sub>2</sub>-MCM-41) as a sensing platform. The PAMAM-functionalized NH<sub>2</sub>-MCM-41 was prepared by using a post-grafting method. The structure/morphology of the prepared PAMAM-functionalized MCM-41 was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and energy-dispersive X-ray (EDS) spectroscopy techniques. Then, the PAMAM-functionalized NH<sub>2</sub>-MCM-41 modified glassy carbon electrode (GCE) was used for differential pulse anodic stripping voltammetric (DPASV) determination of Cu (II). Due to the combination of the high chelating ability of terminal amino groups of PAMAM dendrimer to metal ion (Cu (II)) with the large surface area of MCM-41, the PAMAM/NH<sub>2</sub>-MCM-41/GCE showed an excellent sensitive effect for Cu (II) determination. The different parameters and conditions affecting the stripping current response of Cu (II), including accumulation time, accumulation potential, and pH value were investigated and optimized. Under the optimum conditions, the stripping peak current of Cu (II) linearly increased with its concentration between the 0.002 μM–8.0 μM. The limit of detection (LOD) is calculated to be 6.1 × 10<sup>−10</sup> M for Cu (II) (S/N = 3). Finally, the PAMAM/NH<sub>2</sub>-MCM-41/GCE sensor was successfully used for the Cu (II) determination in water samples, with acceptable recoveries of 97.1 %–103.3 %. The obtained results showed that PAMAM-Functionalized MCM-41 as a promising modifying material can be potentially used in the design and fabrication of electrochemical sensors for heavy metal ions determination.</div></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"180 ","pages":"Article 108047"},"PeriodicalIF":4.2000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of PAMAM-functionalized NH2-MCM-41 modified glassy carbon electrode for quantitative determination of Cu (II) in water samples by using stripping voltammetry\",\"authors\":\"Fariba Garkani Nejad , Hadi Beitollahi , Iran Sheikhshoaie\",\"doi\":\"10.1016/j.elecom.2025.108047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Copper ions act as essential metal ions in various physiological processes, but their excessive accumulation can cause toxicity and severe risks to human health and the environment. Hence, the sensitive and accurate determination of copper levels in water samples is of great significance for public health protection and environmental monitoring. In this study, a new strategy was proposed for the determination of Cu (II) ions in the water samples based on polyamidoamine dendrimer-functionalized NH<sub>2</sub>-mesoporous silica (PAMAM-functionalized NH<sub>2</sub>-MCM-41) as a sensing platform. The PAMAM-functionalized NH<sub>2</sub>-MCM-41 was prepared by using a post-grafting method. The structure/morphology of the prepared PAMAM-functionalized MCM-41 was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and energy-dispersive X-ray (EDS) spectroscopy techniques. Then, the PAMAM-functionalized NH<sub>2</sub>-MCM-41 modified glassy carbon electrode (GCE) was used for differential pulse anodic stripping voltammetric (DPASV) determination of Cu (II). Due to the combination of the high chelating ability of terminal amino groups of PAMAM dendrimer to metal ion (Cu (II)) with the large surface area of MCM-41, the PAMAM/NH<sub>2</sub>-MCM-41/GCE showed an excellent sensitive effect for Cu (II) determination. The different parameters and conditions affecting the stripping current response of Cu (II), including accumulation time, accumulation potential, and pH value were investigated and optimized. Under the optimum conditions, the stripping peak current of Cu (II) linearly increased with its concentration between the 0.002 μM–8.0 μM. The limit of detection (LOD) is calculated to be 6.1 × 10<sup>−10</sup> M for Cu (II) (S/N = 3). Finally, the PAMAM/NH<sub>2</sub>-MCM-41/GCE sensor was successfully used for the Cu (II) determination in water samples, with acceptable recoveries of 97.1 %–103.3 %. The obtained results showed that PAMAM-Functionalized MCM-41 as a promising modifying material can be potentially used in the design and fabrication of electrochemical sensors for heavy metal ions determination.</div></div>\",\"PeriodicalId\":304,\"journal\":{\"name\":\"Electrochemistry Communications\",\"volume\":\"180 \",\"pages\":\"Article 108047\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochemistry Communications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1388248125001870\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388248125001870","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Application of PAMAM-functionalized NH2-MCM-41 modified glassy carbon electrode for quantitative determination of Cu (II) in water samples by using stripping voltammetry
Copper ions act as essential metal ions in various physiological processes, but their excessive accumulation can cause toxicity and severe risks to human health and the environment. Hence, the sensitive and accurate determination of copper levels in water samples is of great significance for public health protection and environmental monitoring. In this study, a new strategy was proposed for the determination of Cu (II) ions in the water samples based on polyamidoamine dendrimer-functionalized NH2-mesoporous silica (PAMAM-functionalized NH2-MCM-41) as a sensing platform. The PAMAM-functionalized NH2-MCM-41 was prepared by using a post-grafting method. The structure/morphology of the prepared PAMAM-functionalized MCM-41 was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and energy-dispersive X-ray (EDS) spectroscopy techniques. Then, the PAMAM-functionalized NH2-MCM-41 modified glassy carbon electrode (GCE) was used for differential pulse anodic stripping voltammetric (DPASV) determination of Cu (II). Due to the combination of the high chelating ability of terminal amino groups of PAMAM dendrimer to metal ion (Cu (II)) with the large surface area of MCM-41, the PAMAM/NH2-MCM-41/GCE showed an excellent sensitive effect for Cu (II) determination. The different parameters and conditions affecting the stripping current response of Cu (II), including accumulation time, accumulation potential, and pH value were investigated and optimized. Under the optimum conditions, the stripping peak current of Cu (II) linearly increased with its concentration between the 0.002 μM–8.0 μM. The limit of detection (LOD) is calculated to be 6.1 × 10−10 M for Cu (II) (S/N = 3). Finally, the PAMAM/NH2-MCM-41/GCE sensor was successfully used for the Cu (II) determination in water samples, with acceptable recoveries of 97.1 %–103.3 %. The obtained results showed that PAMAM-Functionalized MCM-41 as a promising modifying material can be potentially used in the design and fabrication of electrochemical sensors for heavy metal ions determination.
期刊介绍:
Electrochemistry Communications is an open access journal providing fast dissemination of short communications, full communications and mini reviews covering the whole field of electrochemistry which merit urgent publication. Short communications are limited to a maximum of 20,000 characters (including spaces) while full communications and mini reviews are limited to 25,000 characters (including spaces). Supplementary information is permitted for full communications and mini reviews but not for short communications. We aim to be the fastest journal in electrochemistry for these types of papers.