低光图像增强的视黄醇引导生成扩散先验

IF 7.6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Zunjin Zhao, Daming Shi
{"title":"低光图像增强的视黄醇引导生成扩散先验","authors":"Zunjin Zhao,&nbsp;Daming Shi","doi":"10.1016/j.patcog.2025.112421","DOIUrl":null,"url":null,"abstract":"<div><div>Existing Retinex-based training-free low-light image enhancement (LLIE) methods often rely on complex architectures or lack support for text-controlled personalization. In this paper, we propose RetinexGDP, a training-free and text-controllable LLIE framework that uniquely integrates Retinex-based image modeling with generative diffusion priors. First, we introduce a simplified Retinex decomposition by embedding weighted total variation optimization into a single Gaussian convolutional layer, enabling robust illumination estimation without the need for training. Next, we guide the diffusion denoising process using the estimated reflectance map, employing patch-wise inversion and reflectance-conditioned sampling to effectively suppress noise while preserving structural details. Finally, unlike previous diffusion-based LLIE methods that perform only monotonous global brightness enhancement, we incorporate text guidance into the sampling process, enabling controllable enhancement that aligns with user-specific stylistic preferences. RetinexGDP thus provides a modular, interpretable, and text-controllable solution for low-light image enhancement. Experimental results show that RetinexGDP achieves state-of-the-art performance in terms of NIQMC and CPCQI metrics across seven real-world datasets. Code will be available at: <span><span>https://github.com/zhaozunjin/PLIE</span><svg><path></path></svg></span></div></div>","PeriodicalId":49713,"journal":{"name":"Pattern Recognition","volume":"172 ","pages":"Article 112421"},"PeriodicalIF":7.6000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Retinex-guided generative diffusion prior for low-light image enhancement\",\"authors\":\"Zunjin Zhao,&nbsp;Daming Shi\",\"doi\":\"10.1016/j.patcog.2025.112421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Existing Retinex-based training-free low-light image enhancement (LLIE) methods often rely on complex architectures or lack support for text-controlled personalization. In this paper, we propose RetinexGDP, a training-free and text-controllable LLIE framework that uniquely integrates Retinex-based image modeling with generative diffusion priors. First, we introduce a simplified Retinex decomposition by embedding weighted total variation optimization into a single Gaussian convolutional layer, enabling robust illumination estimation without the need for training. Next, we guide the diffusion denoising process using the estimated reflectance map, employing patch-wise inversion and reflectance-conditioned sampling to effectively suppress noise while preserving structural details. Finally, unlike previous diffusion-based LLIE methods that perform only monotonous global brightness enhancement, we incorporate text guidance into the sampling process, enabling controllable enhancement that aligns with user-specific stylistic preferences. RetinexGDP thus provides a modular, interpretable, and text-controllable solution for low-light image enhancement. Experimental results show that RetinexGDP achieves state-of-the-art performance in terms of NIQMC and CPCQI metrics across seven real-world datasets. Code will be available at: <span><span>https://github.com/zhaozunjin/PLIE</span><svg><path></path></svg></span></div></div>\",\"PeriodicalId\":49713,\"journal\":{\"name\":\"Pattern Recognition\",\"volume\":\"172 \",\"pages\":\"Article 112421\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Recognition\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0031320325010829\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031320325010829","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

现有的基于视黄醇的无训练低光图像增强(LLIE)方法往往依赖于复杂的体系结构或缺乏对文本控制个性化的支持。在本文中,我们提出了retexgdp,这是一个无需训练和文本可控的LLIE框架,它独特地将基于retexx的图像建模与生成扩散先验相结合。首先,我们通过将加权总变异优化嵌入到单个高斯卷积层中来引入简化的Retinex分解,从而在不需要训练的情况下实现鲁棒光照估计。接下来,我们使用估计的反射率图指导扩散去噪过程,采用斑块反演和反射条件采样来有效地抑制噪声,同时保留结构细节。最后,与以前基于扩散的LLIE方法只执行单调的全局亮度增强不同,我们将文本引导纳入采样过程,从而实现与用户特定风格偏好相一致的可控增强。因此,retexgdp为低光图像增强提供了模块化、可解释和文本可控的解决方案。实验结果表明,retexgdp在七个真实数据集的NIQMC和CPCQI指标方面达到了最先进的性能。代码将在https://github.com/zhaozunjin/PLIE上提供
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Retinex-guided generative diffusion prior for low-light image enhancement
Existing Retinex-based training-free low-light image enhancement (LLIE) methods often rely on complex architectures or lack support for text-controlled personalization. In this paper, we propose RetinexGDP, a training-free and text-controllable LLIE framework that uniquely integrates Retinex-based image modeling with generative diffusion priors. First, we introduce a simplified Retinex decomposition by embedding weighted total variation optimization into a single Gaussian convolutional layer, enabling robust illumination estimation without the need for training. Next, we guide the diffusion denoising process using the estimated reflectance map, employing patch-wise inversion and reflectance-conditioned sampling to effectively suppress noise while preserving structural details. Finally, unlike previous diffusion-based LLIE methods that perform only monotonous global brightness enhancement, we incorporate text guidance into the sampling process, enabling controllable enhancement that aligns with user-specific stylistic preferences. RetinexGDP thus provides a modular, interpretable, and text-controllable solution for low-light image enhancement. Experimental results show that RetinexGDP achieves state-of-the-art performance in terms of NIQMC and CPCQI metrics across seven real-world datasets. Code will be available at: https://github.com/zhaozunjin/PLIE
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pattern Recognition
Pattern Recognition 工程技术-工程:电子与电气
CiteScore
14.40
自引率
16.20%
发文量
683
审稿时长
5.6 months
期刊介绍: The field of Pattern Recognition is both mature and rapidly evolving, playing a crucial role in various related fields such as computer vision, image processing, text analysis, and neural networks. It closely intersects with machine learning and is being applied in emerging areas like biometrics, bioinformatics, multimedia data analysis, and data science. The journal Pattern Recognition, established half a century ago during the early days of computer science, has since grown significantly in scope and influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信