离散观测随机McKean-Vlasov方程的稳定性分析

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED
Yicheng Liu, Quanxin Zhu
{"title":"离散观测随机McKean-Vlasov方程的稳定性分析","authors":"Yicheng Liu,&nbsp;Quanxin Zhu","doi":"10.1016/j.amc.2025.129740","DOIUrl":null,"url":null,"abstract":"<div><div>This paper explores the stability issue of stochastic McKean–Vlasov equations (SMVEs) through an innovative method: stabilization via stochastic delay feedback control with discrete observation. Unlike conventional techniques, this approach leverages historical states instead of solely relying on the current state, setting it apart from traditional stochastic feedback controls. The study examines how the diffusion term contributes to enhancing system stability despite the presence of random fluctuations and delays, guaranteeing both <span><math><mi>p</mi></math></span>-th moment exponential stability and almost sure exponential stability under a specific delay threshold <span><math><msup><mi>δ</mi><mo>*</mo></msup></math></span>. The primary contributions of this work include introducing a novel stability analysis framework utilizing stochastic delay feedback control, constructing Lyapunov functions that incorporate both state and distribution, and providing insights into asymptotic and moment exponential stability. Although identifying the optimal delay <span><math><msup><mi>δ</mi><mo>*</mo></msup></math></span> remains a practical challenge, the theoretical foundation laid in this study offers valuable guidance for real-world applications.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"511 ","pages":"Article 129740"},"PeriodicalIF":3.4000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability analysis of stochastic McKean–Vlasov equations with discrete observation\",\"authors\":\"Yicheng Liu,&nbsp;Quanxin Zhu\",\"doi\":\"10.1016/j.amc.2025.129740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper explores the stability issue of stochastic McKean–Vlasov equations (SMVEs) through an innovative method: stabilization via stochastic delay feedback control with discrete observation. Unlike conventional techniques, this approach leverages historical states instead of solely relying on the current state, setting it apart from traditional stochastic feedback controls. The study examines how the diffusion term contributes to enhancing system stability despite the presence of random fluctuations and delays, guaranteeing both <span><math><mi>p</mi></math></span>-th moment exponential stability and almost sure exponential stability under a specific delay threshold <span><math><msup><mi>δ</mi><mo>*</mo></msup></math></span>. The primary contributions of this work include introducing a novel stability analysis framework utilizing stochastic delay feedback control, constructing Lyapunov functions that incorporate both state and distribution, and providing insights into asymptotic and moment exponential stability. Although identifying the optimal delay <span><math><msup><mi>δ</mi><mo>*</mo></msup></math></span> remains a practical challenge, the theoretical foundation laid in this study offers valuable guidance for real-world applications.</div></div>\",\"PeriodicalId\":55496,\"journal\":{\"name\":\"Applied Mathematics and Computation\",\"volume\":\"511 \",\"pages\":\"Article 129740\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300325004655\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325004655","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文通过一种新颖的方法——离散观测下的随机延迟反馈控制镇定,探讨了随机McKean-Vlasov方程的稳定性问题。与传统技术不同,这种方法利用历史状态,而不是仅仅依赖于当前状态,将其与传统的随机反馈控制区分开来。研究了在存在随机波动和延迟的情况下,扩散项如何有助于增强系统稳定性,保证在特定延迟阈值δ*下的p阶矩指数稳定性和几乎确定指数稳定性。这项工作的主要贡献包括引入一种利用随机延迟反馈控制的新型稳定性分析框架,构建包含状态和分布的Lyapunov函数,并提供渐近和矩指数稳定性的见解。虽然确定最佳延迟δ*仍然是一个实际挑战,但本研究奠定的理论基础为实际应用提供了有价值的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability analysis of stochastic McKean–Vlasov equations with discrete observation
This paper explores the stability issue of stochastic McKean–Vlasov equations (SMVEs) through an innovative method: stabilization via stochastic delay feedback control with discrete observation. Unlike conventional techniques, this approach leverages historical states instead of solely relying on the current state, setting it apart from traditional stochastic feedback controls. The study examines how the diffusion term contributes to enhancing system stability despite the presence of random fluctuations and delays, guaranteeing both p-th moment exponential stability and almost sure exponential stability under a specific delay threshold δ*. The primary contributions of this work include introducing a novel stability analysis framework utilizing stochastic delay feedback control, constructing Lyapunov functions that incorporate both state and distribution, and providing insights into asymptotic and moment exponential stability. Although identifying the optimal delay δ* remains a practical challenge, the theoretical foundation laid in this study offers valuable guidance for real-world applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信