{"title":"周期阿贝尔群的自同构环和自同构群的初等等价","authors":"Elena Bunina","doi":"10.1016/j.jalgebra.2025.09.002","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we prove that the endomorphism rings <span><math><mspace></mspace><mrow><mi>End</mi></mrow><mspace></mspace><mi>A</mi></math></span> and <span><math><mspace></mspace><mrow><mi>End</mi></mrow><mspace></mspace><msup><mrow><mi>A</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> of periodic infinite Abelian groups <em>A</em> and <span><math><msup><mrow><mi>A</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> are elementarily equivalent if and only if the endomorphism rings of their <em>p</em>-components are elementarily equivalent for all primes <em>p</em>. Additionally, we show that the automorphism groups <span><math><mspace></mspace><mrow><mi>Aut</mi></mrow><mspace></mspace><mi>A</mi></math></span> and <span><math><mspace></mspace><mrow><mi>Aut</mi></mrow><mspace></mspace><msup><mrow><mi>A</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> of periodic Abelian groups <em>A</em> and <span><math><msup><mrow><mi>A</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> that do not have 2-components and do not contain cocyclic <em>p</em>-components are elementarily equivalent if and only if, for any prime <em>p</em>, the corresponding <em>p</em>-components <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> and <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>p</mi></mrow><mrow><mo>′</mo></mrow></msubsup></math></span> of <em>A</em> and <span><math><msup><mrow><mi>A</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> are equivalent in second-order logic if they are not reduced, and are equivalent in second-order logic bounded by the cardinalities of their basic subgroups if they are reduced. According to <span><span>[11]</span></span>, for such groups <em>A</em> and <span><math><msup><mrow><mi>A</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>, their automorphism groups are elementarily equivalent if and only if their endomorphism rings are elementarily equivalent, and the automorphism groups of the corresponding <em>p</em>-components for all primes <em>p</em> are elementarily equivalent.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"687 ","pages":"Pages 179-194"},"PeriodicalIF":0.8000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elementary equivalence of endomorphism rings and automorphism groups of periodic Abelian groups\",\"authors\":\"Elena Bunina\",\"doi\":\"10.1016/j.jalgebra.2025.09.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we prove that the endomorphism rings <span><math><mspace></mspace><mrow><mi>End</mi></mrow><mspace></mspace><mi>A</mi></math></span> and <span><math><mspace></mspace><mrow><mi>End</mi></mrow><mspace></mspace><msup><mrow><mi>A</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> of periodic infinite Abelian groups <em>A</em> and <span><math><msup><mrow><mi>A</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> are elementarily equivalent if and only if the endomorphism rings of their <em>p</em>-components are elementarily equivalent for all primes <em>p</em>. Additionally, we show that the automorphism groups <span><math><mspace></mspace><mrow><mi>Aut</mi></mrow><mspace></mspace><mi>A</mi></math></span> and <span><math><mspace></mspace><mrow><mi>Aut</mi></mrow><mspace></mspace><msup><mrow><mi>A</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> of periodic Abelian groups <em>A</em> and <span><math><msup><mrow><mi>A</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> that do not have 2-components and do not contain cocyclic <em>p</em>-components are elementarily equivalent if and only if, for any prime <em>p</em>, the corresponding <em>p</em>-components <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> and <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>p</mi></mrow><mrow><mo>′</mo></mrow></msubsup></math></span> of <em>A</em> and <span><math><msup><mrow><mi>A</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> are equivalent in second-order logic if they are not reduced, and are equivalent in second-order logic bounded by the cardinalities of their basic subgroups if they are reduced. According to <span><span>[11]</span></span>, for such groups <em>A</em> and <span><math><msup><mrow><mi>A</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>, their automorphism groups are elementarily equivalent if and only if their endomorphism rings are elementarily equivalent, and the automorphism groups of the corresponding <em>p</em>-components for all primes <em>p</em> are elementarily equivalent.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"687 \",\"pages\":\"Pages 179-194\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325005125\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325005125","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Elementary equivalence of endomorphism rings and automorphism groups of periodic Abelian groups
In this paper, we prove that the endomorphism rings and of periodic infinite Abelian groups A and are elementarily equivalent if and only if the endomorphism rings of their p-components are elementarily equivalent for all primes p. Additionally, we show that the automorphism groups and of periodic Abelian groups A and that do not have 2-components and do not contain cocyclic p-components are elementarily equivalent if and only if, for any prime p, the corresponding p-components and of A and are equivalent in second-order logic if they are not reduced, and are equivalent in second-order logic bounded by the cardinalities of their basic subgroups if they are reduced. According to [11], for such groups A and , their automorphism groups are elementarily equivalent if and only if their endomorphism rings are elementarily equivalent, and the automorphism groups of the corresponding p-components for all primes p are elementarily equivalent.
期刊介绍:
The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.