周期阿贝尔群的自同构环和自同构群的初等等价

IF 0.8 2区 数学 Q2 MATHEMATICS
Elena Bunina
{"title":"周期阿贝尔群的自同构环和自同构群的初等等价","authors":"Elena Bunina","doi":"10.1016/j.jalgebra.2025.09.002","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we prove that the endomorphism rings <span><math><mspace></mspace><mrow><mi>End</mi></mrow><mspace></mspace><mi>A</mi></math></span> and <span><math><mspace></mspace><mrow><mi>End</mi></mrow><mspace></mspace><msup><mrow><mi>A</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> of periodic infinite Abelian groups <em>A</em> and <span><math><msup><mrow><mi>A</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> are elementarily equivalent if and only if the endomorphism rings of their <em>p</em>-components are elementarily equivalent for all primes <em>p</em>. Additionally, we show that the automorphism groups <span><math><mspace></mspace><mrow><mi>Aut</mi></mrow><mspace></mspace><mi>A</mi></math></span> and <span><math><mspace></mspace><mrow><mi>Aut</mi></mrow><mspace></mspace><msup><mrow><mi>A</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> of periodic Abelian groups <em>A</em> and <span><math><msup><mrow><mi>A</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> that do not have 2-components and do not contain cocyclic <em>p</em>-components are elementarily equivalent if and only if, for any prime <em>p</em>, the corresponding <em>p</em>-components <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> and <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>p</mi></mrow><mrow><mo>′</mo></mrow></msubsup></math></span> of <em>A</em> and <span><math><msup><mrow><mi>A</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> are equivalent in second-order logic if they are not reduced, and are equivalent in second-order logic bounded by the cardinalities of their basic subgroups if they are reduced. According to <span><span>[11]</span></span>, for such groups <em>A</em> and <span><math><msup><mrow><mi>A</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>, their automorphism groups are elementarily equivalent if and only if their endomorphism rings are elementarily equivalent, and the automorphism groups of the corresponding <em>p</em>-components for all primes <em>p</em> are elementarily equivalent.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"687 ","pages":"Pages 179-194"},"PeriodicalIF":0.8000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elementary equivalence of endomorphism rings and automorphism groups of periodic Abelian groups\",\"authors\":\"Elena Bunina\",\"doi\":\"10.1016/j.jalgebra.2025.09.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we prove that the endomorphism rings <span><math><mspace></mspace><mrow><mi>End</mi></mrow><mspace></mspace><mi>A</mi></math></span> and <span><math><mspace></mspace><mrow><mi>End</mi></mrow><mspace></mspace><msup><mrow><mi>A</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> of periodic infinite Abelian groups <em>A</em> and <span><math><msup><mrow><mi>A</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> are elementarily equivalent if and only if the endomorphism rings of their <em>p</em>-components are elementarily equivalent for all primes <em>p</em>. Additionally, we show that the automorphism groups <span><math><mspace></mspace><mrow><mi>Aut</mi></mrow><mspace></mspace><mi>A</mi></math></span> and <span><math><mspace></mspace><mrow><mi>Aut</mi></mrow><mspace></mspace><msup><mrow><mi>A</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> of periodic Abelian groups <em>A</em> and <span><math><msup><mrow><mi>A</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> that do not have 2-components and do not contain cocyclic <em>p</em>-components are elementarily equivalent if and only if, for any prime <em>p</em>, the corresponding <em>p</em>-components <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> and <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>p</mi></mrow><mrow><mo>′</mo></mrow></msubsup></math></span> of <em>A</em> and <span><math><msup><mrow><mi>A</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> are equivalent in second-order logic if they are not reduced, and are equivalent in second-order logic bounded by the cardinalities of their basic subgroups if they are reduced. According to <span><span>[11]</span></span>, for such groups <em>A</em> and <span><math><msup><mrow><mi>A</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>, their automorphism groups are elementarily equivalent if and only if their endomorphism rings are elementarily equivalent, and the automorphism groups of the corresponding <em>p</em>-components for all primes <em>p</em> are elementarily equivalent.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"687 \",\"pages\":\"Pages 179-194\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325005125\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325005125","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文证明了周期无限阿贝尔群A和A ‘的自同构环EndA和EndA ’当且仅当它们的p分量的自同构环对所有素数p是初等等价的。另外,我们证明了周期阿贝尔群A和A ‘的不含2分量和共环p分量的自同构群AutA和AutA ’是初等等价的,当且仅当,对于任意素数p,A和A ‘的对应p分量Ap和Ap ’如果不约简,在二阶逻辑中是等价的;如果约简,在二阶逻辑中以它们的基本子群的基数为界是等价的。根据[11],对于这类群A和A ',它们的自同构群当且仅当它们的自同构环是初等等价的,并且所有素数p对应的p分量的自同构群是初等等价的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Elementary equivalence of endomorphism rings and automorphism groups of periodic Abelian groups
In this paper, we prove that the endomorphism rings EndA and EndA of periodic infinite Abelian groups A and A are elementarily equivalent if and only if the endomorphism rings of their p-components are elementarily equivalent for all primes p. Additionally, we show that the automorphism groups AutA and AutA of periodic Abelian groups A and A that do not have 2-components and do not contain cocyclic p-components are elementarily equivalent if and only if, for any prime p, the corresponding p-components Ap and Ap of A and A are equivalent in second-order logic if they are not reduced, and are equivalent in second-order logic bounded by the cardinalities of their basic subgroups if they are reduced. According to [11], for such groups A and A, their automorphism groups are elementarily equivalent if and only if their endomorphism rings are elementarily equivalent, and the automorphism groups of the corresponding p-components for all primes p are elementarily equivalent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信