(2+1)维Sawada-Kotera-like方程的相互作用结构

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Yarong Xia , Wenjie Huang , Ruoxia Yao
{"title":"(2+1)维Sawada-Kotera-like方程的相互作用结构","authors":"Yarong Xia ,&nbsp;Wenjie Huang ,&nbsp;Ruoxia Yao","doi":"10.1016/j.aml.2025.109762","DOIUrl":null,"url":null,"abstract":"<div><div>This paper mainly studies the interaction structures of lump wave and other types of localized wave for (2+ 1)-dimensional Sawada–Kotera-like (SK-Like) equation. Firstly, the <span><math><mi>N</mi></math></span>-soliton solutions are constructed via the Hirota bilinear method. Subsequently, using the long-wave limit method, we derive several distinct hybrid solutions which include lump-line waves, lump-breather waves, and hybrid solution among lump, line and breather waves. At the same time, we discuss that the lump wave neither collides with line waves or breather waves nor always lies on them under the conditions <span><math><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>=</mo><mn>0</mn></mrow></math></span> and <span><math><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>=</mo><mn>0</mn></mrow></math></span>. In addition, based on the mixed solutions obtained above, by leveraging the velocity resonance mechanism, we construct the soliton molecular bound states among lump wave, line wave, and breather wave. Furthermore, through numerical simulation, vivid pictures of the superposition of lump wave and other nonlinear waves are presented.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"173 ","pages":"Article 109762"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interaction structures of (2+1)-dimensional Sawada–Kotera-like equation\",\"authors\":\"Yarong Xia ,&nbsp;Wenjie Huang ,&nbsp;Ruoxia Yao\",\"doi\":\"10.1016/j.aml.2025.109762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper mainly studies the interaction structures of lump wave and other types of localized wave for (2+ 1)-dimensional Sawada–Kotera-like (SK-Like) equation. Firstly, the <span><math><mi>N</mi></math></span>-soliton solutions are constructed via the Hirota bilinear method. Subsequently, using the long-wave limit method, we derive several distinct hybrid solutions which include lump-line waves, lump-breather waves, and hybrid solution among lump, line and breather waves. At the same time, we discuss that the lump wave neither collides with line waves or breather waves nor always lies on them under the conditions <span><math><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>=</mo><mn>0</mn></mrow></math></span> and <span><math><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>=</mo><mn>0</mn></mrow></math></span>. In addition, based on the mixed solutions obtained above, by leveraging the velocity resonance mechanism, we construct the soliton molecular bound states among lump wave, line wave, and breather wave. Furthermore, through numerical simulation, vivid pictures of the superposition of lump wave and other nonlinear waves are presented.</div></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"173 \",\"pages\":\"Article 109762\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S089396592500312X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089396592500312X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究(2+ 1)维Sawada-Kotera-like (SK-Like)方程中块状波与其他类型的局域波的相互作用结构。首先,利用Hirota双线性方法构造n孤子解。在此基础上,利用长波极限方法,导出了几种不同的混合解,包括块线波、块线波和呼吸波的混合解。同时,讨论了在λ3=0和λ4=0条件下,块状波不与线波和呼吸波碰撞,也不总是位于线波和呼吸波之上。此外,在上述混合解的基础上,利用速度共振机制,构建了块波、线波和呼吸波之间的孤子分子束缚态。此外,通过数值模拟,给出了块波与其他非线性波叠加的生动图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interaction structures of (2+1)-dimensional Sawada–Kotera-like equation
This paper mainly studies the interaction structures of lump wave and other types of localized wave for (2+ 1)-dimensional Sawada–Kotera-like (SK-Like) equation. Firstly, the N-soliton solutions are constructed via the Hirota bilinear method. Subsequently, using the long-wave limit method, we derive several distinct hybrid solutions which include lump-line waves, lump-breather waves, and hybrid solution among lump, line and breather waves. At the same time, we discuss that the lump wave neither collides with line waves or breather waves nor always lies on them under the conditions λ3=0 and λ4=0. In addition, based on the mixed solutions obtained above, by leveraging the velocity resonance mechanism, we construct the soliton molecular bound states among lump wave, line wave, and breather wave. Furthermore, through numerical simulation, vivid pictures of the superposition of lump wave and other nonlinear waves are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信