利用物理约束神经网络的混合模型改进水动力预测

IF 4.6 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Wangjiayi Liu , Guanghua Guan , Xin Tian , Xiaonan Chen , Liangsheng Shi , Guangtao Fu
{"title":"利用物理约束神经网络的混合模型改进水动力预测","authors":"Wangjiayi Liu ,&nbsp;Guanghua Guan ,&nbsp;Xin Tian ,&nbsp;Xiaonan Chen ,&nbsp;Liangsheng Shi ,&nbsp;Guangtao Fu","doi":"10.1016/j.envsoft.2025.106699","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate hydrodynamic prediction is vital for water transfer systems to ensure delivery efficiency and prevent damage. Traditional physics-based models use predefined or estimated offtake discharges as lateral boundaries, neglecting interactions between real-time hydraulic states and future offtake discharge, then causing water level predictive errors. To address this, we propose a hybrid model with a physics-constrained neural network (PcNN) for real-time offtake discharge prediction. The PcNN employs long short-term memory (LSTM), incorporating physical constraints into the input layer and loss function from prior knowledge and a hydrodynamic model. Applied to a large-scale water transfer system in China, the hybrid model improves offtake discharge prediction by 30 %–70 % over the baseline and boosts water level forecasting, with Nash-Sutcliffe efficiency coefficients reaching 0.84 and 0.92 in upstream and downstream sections. The results demonstrate its effectiveness in integrating system hydrodynamics with data patterns, offering a robust tool for real-time decision support in water resource management.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"194 ","pages":"Article 106699"},"PeriodicalIF":4.6000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hybrid model with a physics-constrained neural network to improve hydrodynamic prediction\",\"authors\":\"Wangjiayi Liu ,&nbsp;Guanghua Guan ,&nbsp;Xin Tian ,&nbsp;Xiaonan Chen ,&nbsp;Liangsheng Shi ,&nbsp;Guangtao Fu\",\"doi\":\"10.1016/j.envsoft.2025.106699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate hydrodynamic prediction is vital for water transfer systems to ensure delivery efficiency and prevent damage. Traditional physics-based models use predefined or estimated offtake discharges as lateral boundaries, neglecting interactions between real-time hydraulic states and future offtake discharge, then causing water level predictive errors. To address this, we propose a hybrid model with a physics-constrained neural network (PcNN) for real-time offtake discharge prediction. The PcNN employs long short-term memory (LSTM), incorporating physical constraints into the input layer and loss function from prior knowledge and a hydrodynamic model. Applied to a large-scale water transfer system in China, the hybrid model improves offtake discharge prediction by 30 %–70 % over the baseline and boosts water level forecasting, with Nash-Sutcliffe efficiency coefficients reaching 0.84 and 0.92 in upstream and downstream sections. The results demonstrate its effectiveness in integrating system hydrodynamics with data patterns, offering a robust tool for real-time decision support in water resource management.</div></div>\",\"PeriodicalId\":310,\"journal\":{\"name\":\"Environmental Modelling & Software\",\"volume\":\"194 \",\"pages\":\"Article 106699\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Modelling & Software\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364815225003834\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815225003834","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

准确的水动力预测对于保证输水系统的输水效率和防止破坏至关重要。传统的基于物理的模型使用预定义的或估计的进水量作为横向边界,忽略了实时水力状态和未来进水量之间的相互作用,从而导致水位预测误差。为了解决这个问题,我们提出了一种物理约束神经网络(PcNN)的混合模型,用于实时预测取电流量。PcNN采用长短期记忆(LSTM),将物理约束纳入输入层,并从先验知识和水动力模型中引入损失函数。将该混合模型应用于中国某大型调水系统,在基线基础上提高了30% ~ 70%的径流量预测,提高了水位预测,上下游段Nash-Sutcliffe效率系数分别达到0.84和0.92。结果表明,该方法可以有效地将系统流体动力学与数据模式相结合,为水资源管理中的实时决策支持提供了一个强大的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A hybrid model with a physics-constrained neural network to improve hydrodynamic prediction
Accurate hydrodynamic prediction is vital for water transfer systems to ensure delivery efficiency and prevent damage. Traditional physics-based models use predefined or estimated offtake discharges as lateral boundaries, neglecting interactions between real-time hydraulic states and future offtake discharge, then causing water level predictive errors. To address this, we propose a hybrid model with a physics-constrained neural network (PcNN) for real-time offtake discharge prediction. The PcNN employs long short-term memory (LSTM), incorporating physical constraints into the input layer and loss function from prior knowledge and a hydrodynamic model. Applied to a large-scale water transfer system in China, the hybrid model improves offtake discharge prediction by 30 %–70 % over the baseline and boosts water level forecasting, with Nash-Sutcliffe efficiency coefficients reaching 0.84 and 0.92 in upstream and downstream sections. The results demonstrate its effectiveness in integrating system hydrodynamics with data patterns, offering a robust tool for real-time decision support in water resource management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信