镁水泥-粉煤灰复合稳定剂对黄土固化性能、增效机理及CO2平衡的改善

IF 5.8 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Qi Xu, Dongliang Chen, Xuerui Yan, Chunxi Hai, Yuan Zhou
{"title":"镁水泥-粉煤灰复合稳定剂对黄土固化性能、增效机理及CO2平衡的改善","authors":"Qi Xu,&nbsp;Dongliang Chen,&nbsp;Xuerui Yan,&nbsp;Chunxi Hai,&nbsp;Yuan Zhou","doi":"10.1016/j.scp.2025.102217","DOIUrl":null,"url":null,"abstract":"<div><div>To address erosion on the ecologically fragile Loess Plateau, this study develops a green alternative to Portland cement-based solidifiers: magnesium oxysulfate cement (MOS) combined with industrial waste fly ash (FA), aligned with green chemistry principles. Physical tests show the MOS-FA composite notably optimizes loess porosity: for the MOS-15 %FA sample, pore volume decreases to 0.233 mL/g (31.4 % porosity, macropores 10.7 %, medium/small pores 28.8 %), and compressive strength rises from 1.3 MPa to 7.1 MPa. Microstructural analysis reveals hydration products (sheet-like Mg(OH)<sub>2</sub>, flocculent M-S-H/M-A-S-H/C–S–H, acicular 5·1·7 phase) fill particle pores and form connections, with TG/DTG confirming silicate hydrates. The solidification mechanism relies on dual “chemical cementation (product encapsulation/entanglement) - physical filling (unreacted FA pore-filling)” effects, achieving particle bonding and microstructural densification to enhance mechanical properties. Under comparable strength requirements, MOS-FA exhibits superior carbon emission performance, underscoring its environmental sustainability for loess stabilization.</div></div>","PeriodicalId":22138,"journal":{"name":"Sustainable Chemistry and Pharmacy","volume":"48 ","pages":"Article 102217"},"PeriodicalIF":5.8000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced performance, synergistic mechanism, and better CO2 balance of loess solidification with magnesium cement-fly ash composite stabilizing agent\",\"authors\":\"Qi Xu,&nbsp;Dongliang Chen,&nbsp;Xuerui Yan,&nbsp;Chunxi Hai,&nbsp;Yuan Zhou\",\"doi\":\"10.1016/j.scp.2025.102217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To address erosion on the ecologically fragile Loess Plateau, this study develops a green alternative to Portland cement-based solidifiers: magnesium oxysulfate cement (MOS) combined with industrial waste fly ash (FA), aligned with green chemistry principles. Physical tests show the MOS-FA composite notably optimizes loess porosity: for the MOS-15 %FA sample, pore volume decreases to 0.233 mL/g (31.4 % porosity, macropores 10.7 %, medium/small pores 28.8 %), and compressive strength rises from 1.3 MPa to 7.1 MPa. Microstructural analysis reveals hydration products (sheet-like Mg(OH)<sub>2</sub>, flocculent M-S-H/M-A-S-H/C–S–H, acicular 5·1·7 phase) fill particle pores and form connections, with TG/DTG confirming silicate hydrates. The solidification mechanism relies on dual “chemical cementation (product encapsulation/entanglement) - physical filling (unreacted FA pore-filling)” effects, achieving particle bonding and microstructural densification to enhance mechanical properties. Under comparable strength requirements, MOS-FA exhibits superior carbon emission performance, underscoring its environmental sustainability for loess stabilization.</div></div>\",\"PeriodicalId\":22138,\"journal\":{\"name\":\"Sustainable Chemistry and Pharmacy\",\"volume\":\"48 \",\"pages\":\"Article 102217\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Chemistry and Pharmacy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352554125003158\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Chemistry and Pharmacy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352554125003158","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为了解决生态脆弱的黄土高原的侵蚀问题,本研究开发了一种绿色替代波特兰水泥基固化剂:硫酸镁水泥(MOS)与工业废粉煤灰(FA)结合,符合绿色化学原理。物理试验结果表明,MOS-FA复合材料显著优化了黄土的孔隙度:对于mos - 15% FA样品,孔隙体积减小到0.233 mL/g(孔隙率为31.4%,大孔隙率为10.7%,中小孔隙率为28.8%),抗压强度从1.3 MPa提高到7.1 MPa。微观结构分析表明,水化产物(片状Mg(OH)2、絮状M-S-H/M-A-S-H/ C-S-H、针状5·1·7相)填充颗粒孔隙并形成连接,TG/DTG证实水化产物为硅酸盐水合物。固化机理依靠双重“化学胶结(产品封装/缠结)-物理填充(未反应FA孔隙填充)”效应,实现颗粒结合和微观结构致密化,提高力学性能。在同等强度要求下,MOS-FA表现出优异的碳排放性能,突出了其稳定黄土的环境可持续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhanced performance, synergistic mechanism, and better CO2 balance of loess solidification with magnesium cement-fly ash composite stabilizing agent

Enhanced performance, synergistic mechanism, and better CO2 balance of loess solidification with magnesium cement-fly ash composite stabilizing agent
To address erosion on the ecologically fragile Loess Plateau, this study develops a green alternative to Portland cement-based solidifiers: magnesium oxysulfate cement (MOS) combined with industrial waste fly ash (FA), aligned with green chemistry principles. Physical tests show the MOS-FA composite notably optimizes loess porosity: for the MOS-15 %FA sample, pore volume decreases to 0.233 mL/g (31.4 % porosity, macropores 10.7 %, medium/small pores 28.8 %), and compressive strength rises from 1.3 MPa to 7.1 MPa. Microstructural analysis reveals hydration products (sheet-like Mg(OH)2, flocculent M-S-H/M-A-S-H/C–S–H, acicular 5·1·7 phase) fill particle pores and form connections, with TG/DTG confirming silicate hydrates. The solidification mechanism relies on dual “chemical cementation (product encapsulation/entanglement) - physical filling (unreacted FA pore-filling)” effects, achieving particle bonding and microstructural densification to enhance mechanical properties. Under comparable strength requirements, MOS-FA exhibits superior carbon emission performance, underscoring its environmental sustainability for loess stabilization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sustainable Chemistry and Pharmacy
Sustainable Chemistry and Pharmacy Environmental Science-Pollution
CiteScore
8.20
自引率
6.70%
发文量
274
审稿时长
37 days
期刊介绍: Sustainable Chemistry and Pharmacy publishes research that is related to chemistry, pharmacy and sustainability science in a forward oriented manner. It provides a unique forum for the publication of innovative research on the intersection and overlap of chemistry and pharmacy on the one hand and sustainability on the other hand. This includes contributions related to increasing sustainability of chemistry and pharmaceutical science and industries itself as well as their products in relation to the contribution of these to sustainability itself. As an interdisciplinary and transdisciplinary journal it addresses all sustainability related issues along the life cycle of chemical and pharmaceutical products form resource related topics until the end of life of products. This includes not only natural science based approaches and issues but also from humanities, social science and economics as far as they are dealing with sustainability related to chemistry and pharmacy. Sustainable Chemistry and Pharmacy aims at bridging between disciplines as well as developing and developed countries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信