图的id因子临界和分数因子[a,b]的距离谱条件

IF 0.7 3区 数学 Q2 MATHEMATICS
Tingyan Ma , Ligong Wang
{"title":"图的id因子临界和分数因子[a,b]的距离谱条件","authors":"Tingyan Ma ,&nbsp;Ligong Wang","doi":"10.1016/j.disc.2025.114803","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>,</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></math></span> be a graph with vertex set <span><math><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and edge set <span><math><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. A graph is <em>ID</em>-factor-critical if for every independent set <em>I</em> of <em>G</em> whose size has the same parity as <span><math><mo>|</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo></math></span>, <span><math><mi>G</mi><mo>−</mo><mi>I</mi></math></span> has a perfect matching. For two positive integers <em>a</em> and <em>b</em> with <span><math><mi>a</mi><mo>≤</mo><mi>b</mi></math></span>, let <em>h</em>: <span><math><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>→</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> be a function on <span><math><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> satisfying <span><math><mi>a</mi><mo>≤</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>e</mi><mo>∈</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow></msub><mi>h</mi><mo>(</mo><mi>e</mi><mo>)</mo><mo>≤</mo><mi>b</mi></math></span> for any vertex <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. Then the spanning subgraph with edge set <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>h</mi></mrow></msub></math></span>, denoted by <span><math><mi>G</mi><mo>[</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>h</mi></mrow></msub><mo>]</mo></math></span>, is called a fractional <span><math><mo>[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>]</mo></math></span>-factor of <em>G</em> with indicator function <em>h</em>, where <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>h</mi></mrow></msub><mo>=</mo><mo>{</mo><mi>e</mi><mo>∈</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mi>h</mi><mo>(</mo><mi>e</mi><mo>)</mo><mo>&gt;</mo><mn>0</mn><mo>}</mo></math></span> and <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo><mo>=</mo><mo>{</mo><mi>e</mi><mo>∈</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mi>e</mi></math></span> is incident with <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> in <em>G</em>}. A graph is defined as a fractional <span><math><mo>[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>]</mo></math></span>-deleted graph if for any <span><math><mi>e</mi><mo>∈</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, <span><math><mi>G</mi><mo>−</mo><mi>e</mi></math></span> contains a fractional <span><math><mo>[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>]</mo></math></span>-factor. For any integer <span><math><mi>k</mi><mo>≥</mo><mn>1</mn></math></span>, a graph has a <em>k</em>-factor if it contains a <em>k</em>-regular spanning subgraph. In this paper, we firstly give a distance spectral radius condition of <em>G</em> to guarantee that <em>G</em> is <em>ID</em>-factor-critical. Furthermore, we provide sufficient conditions in terms of distance spectral radius and distance signless Laplacian spectral radius for a graph to contain a fractional <span><math><mo>[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>]</mo></math></span>-factor, fractional <span><math><mo>[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>]</mo></math></span>-deleted-factor and <em>k</em>-factor.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 3","pages":"Article 114803"},"PeriodicalIF":0.7000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distance spectral conditions for ID-factor-criticality and fractional [a,b]-factor of graphs\",\"authors\":\"Tingyan Ma ,&nbsp;Ligong Wang\",\"doi\":\"10.1016/j.disc.2025.114803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>,</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></math></span> be a graph with vertex set <span><math><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and edge set <span><math><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. A graph is <em>ID</em>-factor-critical if for every independent set <em>I</em> of <em>G</em> whose size has the same parity as <span><math><mo>|</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo></math></span>, <span><math><mi>G</mi><mo>−</mo><mi>I</mi></math></span> has a perfect matching. For two positive integers <em>a</em> and <em>b</em> with <span><math><mi>a</mi><mo>≤</mo><mi>b</mi></math></span>, let <em>h</em>: <span><math><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>→</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> be a function on <span><math><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> satisfying <span><math><mi>a</mi><mo>≤</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>e</mi><mo>∈</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow></msub><mi>h</mi><mo>(</mo><mi>e</mi><mo>)</mo><mo>≤</mo><mi>b</mi></math></span> for any vertex <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. Then the spanning subgraph with edge set <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>h</mi></mrow></msub></math></span>, denoted by <span><math><mi>G</mi><mo>[</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>h</mi></mrow></msub><mo>]</mo></math></span>, is called a fractional <span><math><mo>[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>]</mo></math></span>-factor of <em>G</em> with indicator function <em>h</em>, where <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>h</mi></mrow></msub><mo>=</mo><mo>{</mo><mi>e</mi><mo>∈</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mi>h</mi><mo>(</mo><mi>e</mi><mo>)</mo><mo>&gt;</mo><mn>0</mn><mo>}</mo></math></span> and <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo><mo>=</mo><mo>{</mo><mi>e</mi><mo>∈</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mi>e</mi></math></span> is incident with <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> in <em>G</em>}. A graph is defined as a fractional <span><math><mo>[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>]</mo></math></span>-deleted graph if for any <span><math><mi>e</mi><mo>∈</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, <span><math><mi>G</mi><mo>−</mo><mi>e</mi></math></span> contains a fractional <span><math><mo>[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>]</mo></math></span>-factor. For any integer <span><math><mi>k</mi><mo>≥</mo><mn>1</mn></math></span>, a graph has a <em>k</em>-factor if it contains a <em>k</em>-regular spanning subgraph. In this paper, we firstly give a distance spectral radius condition of <em>G</em> to guarantee that <em>G</em> is <em>ID</em>-factor-critical. Furthermore, we provide sufficient conditions in terms of distance spectral radius and distance signless Laplacian spectral radius for a graph to contain a fractional <span><math><mo>[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>]</mo></math></span>-factor, fractional <span><math><mo>[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>]</mo></math></span>-deleted-factor and <em>k</em>-factor.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"349 3\",\"pages\":\"Article 114803\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X2500411X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X2500411X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设G=(V(G),E(G))是一个顶点集V(G),边集E(G)的图。如果对于G的每个独立集I,其大小与|V(G)|具有相同的奇偶性,则G−I具有完全匹配,则图是id因子关键的。对于a≤b的两个正整数a和b,设h: E(G)→[0,1]是E(G)上满足a≤∑E∈EG(vi)h(E)≤b的函数,对于任意顶点vi∈V(G)。则对于边集Eh的生成子图,用G[Eh]表示,称为G的分数[a,b]因子,具有指示函数h,其中Eh={e∈e (G)|h(e)>0}, EG(vi)={e∈e (G)|e在G}中与vi有关联。如果对于任意e∈e (G), G−e包含分数[A,b]-因子,则图被定义为分数[A,b]-删除图。对于任意整数k≥1,如果一个图包含一个k正则生成子图,则它有一个k因子。本文首先给出了G的距离谱半径条件,以保证G是id因子临界的。进一步,我们从距离谱半径和距离无符号拉普拉斯谱半径两方面给出了图包含分数阶[a,b]-因子、分数阶[a,b]-删除因子和k-因子的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distance spectral conditions for ID-factor-criticality and fractional [a,b]-factor of graphs
Let G=(V(G),E(G)) be a graph with vertex set V(G) and edge set E(G). A graph is ID-factor-critical if for every independent set I of G whose size has the same parity as |V(G)|, GI has a perfect matching. For two positive integers a and b with ab, let h: E(G)[0,1] be a function on E(G) satisfying aeEG(vi)h(e)b for any vertex viV(G). Then the spanning subgraph with edge set Eh, denoted by G[Eh], is called a fractional [a,b]-factor of G with indicator function h, where Eh={eE(G)|h(e)>0} and EG(vi)={eE(G)|e is incident with vi in G}. A graph is defined as a fractional [a,b]-deleted graph if for any eE(G), Ge contains a fractional [a,b]-factor. For any integer k1, a graph has a k-factor if it contains a k-regular spanning subgraph. In this paper, we firstly give a distance spectral radius condition of G to guarantee that G is ID-factor-critical. Furthermore, we provide sufficient conditions in terms of distance spectral radius and distance signless Laplacian spectral radius for a graph to contain a fractional [a,b]-factor, fractional [a,b]-deleted-factor and k-factor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信