{"title":"关于奇环稳定性的一个改进结果","authors":"Zilong Yan , Xiaoli Yuan, Yuejian Peng","doi":"10.1016/j.disc.2025.114801","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>C</mi></math></span> be a family consisting of some odd cycles. Suppose that <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>ℓ</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> is the shortest odd cycle not in <span><math><mi>C</mi></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> is the longest odd cycle in <span><math><mi>C</mi></math></span>. Let <span><math><mi>B</mi><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>ℓ</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> denote the graph obtained by taking <span><math><mn>2</mn><mi>ℓ</mi><mo>+</mo><mn>1</mn></math></span> vertex-disjoint copies of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn><mo>(</mo><mn>2</mn><mi>ℓ</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mfrac><mo>,</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn><mo>(</mo><mn>2</mn><mi>ℓ</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mfrac></mrow></msub></math></span> and selecting a vertex in each of them such that these vertices form a cycle of length <span><math><mn>2</mn><mi>ℓ</mi><mo>+</mo><mn>1</mn></math></span>. In this paper, we show that if <span><math><mi>k</mi><mo>≥</mo><msup><mrow><mn>79</mn></mrow><mrow><mn>4</mn></mrow></msup><msup><mrow><mi>ℓ</mi></mrow><mrow><mn>12</mn></mrow></msup></math></span>, <span><math><mi>n</mi><mo>≥</mo><mn>4</mn><mo>(</mo><mn>2</mn><mi>ℓ</mi><mo>+</mo><mn>1</mn><mo>)</mo><mi>k</mi><mo>+</mo><mo>(</mo><mn>16</mn><mi>ℓ</mi><mo>+</mo><mn>10</mn><mo>)</mo><mo>(</mo><mn>2</mn><mi>ℓ</mi><mo>+</mo><mn>1</mn><mo>)</mo><msup><mrow><mi>k</mi></mrow><mrow><mfrac><mrow><mn>3</mn></mrow><mrow><mn>4</mn></mrow></mfrac></mrow></msup></math></span> and <em>G</em> is an <em>n</em>-vertex <span><math><mi>C</mi></math></span>-free graph with minimum degree <span><math><mi>δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>></mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn><mo>(</mo><mn>2</mn><mi>ℓ</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mfrac></math></span>, then <em>G</em> is bipartite. The condition on the minimum degree is tight evidenced by <span><math><mi>B</mi><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>ℓ</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span>. Furthermore, we show the only non-bipartite <span><math><mi>C</mi></math></span>-free graph with minimum degree <span><math><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn><mo>(</mo><mn>2</mn><mi>ℓ</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mfrac></math></span> is <span><math><mi>B</mi><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>ℓ</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span>. This improves the condition of <em>n</em> in a result of Yuan-Peng. The previous known result of Yuan-Peng corresponding to the case <span><math><mi>C</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>}</mo></math></span> for <span><math><mi>k</mi><mo>≥</mo><mn>5</mn></math></span> (thus <span><math><mi>ℓ</mi><mo>=</mo><mn>1</mn></math></span>) implies that if <em>G</em> is an <em>n</em>-vertex non-bipartite graph with <span><math><mi>δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>6</mn></mrow></mfrac></math></span> and <span><math><mi>G</mi><mo>≠</mo><mi>B</mi><msub><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span>, then <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>⊂</mo><mi>G</mi></math></span> for all <span><math><mi>k</mi><mo>∈</mo><mo>[</mo><mn>5</mn><mo>,</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>21000</mn></mrow></mfrac><mo>]</mo></math></span>. Taking <span><math><mi>C</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>}</mo></math></span> in our main result, with the improvement of the requirement on <em>n</em> in this paper, we can extend the range of <em>k</em> from <span><math><mo>[</mo><mn>5</mn><mo>,</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>21000</mn></mrow></mfrac><mo>]</mo></math></span> to <span><math><mo>[</mo><mn>5</mn><mo>,</mo><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>12</mn></mrow></mfrac><mo>−</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><mi>n</mi><mo>]</mo></math></span>. Precisely, our main result implies that if <em>G</em> is an <em>n</em>-vertex non-bipartite graph with <span><math><mi>δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>6</mn></mrow></mfrac></math></span> and <span><math><mi>G</mi><mo>≠</mo><mi>B</mi><msub><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span>, then <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>⊂</mo><mi>G</mi></math></span> for all <span><math><mi>k</mi><mo>∈</mo><mo>[</mo><mn>5</mn><mo>,</mo><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>12</mn></mrow></mfrac><mo>−</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><mi>n</mi><mo>]</mo></math></span>. Furthermore, we give an example to illustrate the condition on <em>n</em> given here is asymptotically tight.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 3","pages":"Article 114801"},"PeriodicalIF":0.7000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An improved result on the stability of odd cycles\",\"authors\":\"Zilong Yan , Xiaoli Yuan, Yuejian Peng\",\"doi\":\"10.1016/j.disc.2025.114801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>C</mi></math></span> be a family consisting of some odd cycles. Suppose that <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>ℓ</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> is the shortest odd cycle not in <span><math><mi>C</mi></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> is the longest odd cycle in <span><math><mi>C</mi></math></span>. Let <span><math><mi>B</mi><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>ℓ</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> denote the graph obtained by taking <span><math><mn>2</mn><mi>ℓ</mi><mo>+</mo><mn>1</mn></math></span> vertex-disjoint copies of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn><mo>(</mo><mn>2</mn><mi>ℓ</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mfrac><mo>,</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn><mo>(</mo><mn>2</mn><mi>ℓ</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mfrac></mrow></msub></math></span> and selecting a vertex in each of them such that these vertices form a cycle of length <span><math><mn>2</mn><mi>ℓ</mi><mo>+</mo><mn>1</mn></math></span>. In this paper, we show that if <span><math><mi>k</mi><mo>≥</mo><msup><mrow><mn>79</mn></mrow><mrow><mn>4</mn></mrow></msup><msup><mrow><mi>ℓ</mi></mrow><mrow><mn>12</mn></mrow></msup></math></span>, <span><math><mi>n</mi><mo>≥</mo><mn>4</mn><mo>(</mo><mn>2</mn><mi>ℓ</mi><mo>+</mo><mn>1</mn><mo>)</mo><mi>k</mi><mo>+</mo><mo>(</mo><mn>16</mn><mi>ℓ</mi><mo>+</mo><mn>10</mn><mo>)</mo><mo>(</mo><mn>2</mn><mi>ℓ</mi><mo>+</mo><mn>1</mn><mo>)</mo><msup><mrow><mi>k</mi></mrow><mrow><mfrac><mrow><mn>3</mn></mrow><mrow><mn>4</mn></mrow></mfrac></mrow></msup></math></span> and <em>G</em> is an <em>n</em>-vertex <span><math><mi>C</mi></math></span>-free graph with minimum degree <span><math><mi>δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>></mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn><mo>(</mo><mn>2</mn><mi>ℓ</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mfrac></math></span>, then <em>G</em> is bipartite. The condition on the minimum degree is tight evidenced by <span><math><mi>B</mi><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>ℓ</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span>. Furthermore, we show the only non-bipartite <span><math><mi>C</mi></math></span>-free graph with minimum degree <span><math><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn><mo>(</mo><mn>2</mn><mi>ℓ</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mfrac></math></span> is <span><math><mi>B</mi><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>ℓ</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span>. This improves the condition of <em>n</em> in a result of Yuan-Peng. The previous known result of Yuan-Peng corresponding to the case <span><math><mi>C</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>}</mo></math></span> for <span><math><mi>k</mi><mo>≥</mo><mn>5</mn></math></span> (thus <span><math><mi>ℓ</mi><mo>=</mo><mn>1</mn></math></span>) implies that if <em>G</em> is an <em>n</em>-vertex non-bipartite graph with <span><math><mi>δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>6</mn></mrow></mfrac></math></span> and <span><math><mi>G</mi><mo>≠</mo><mi>B</mi><msub><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span>, then <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>⊂</mo><mi>G</mi></math></span> for all <span><math><mi>k</mi><mo>∈</mo><mo>[</mo><mn>5</mn><mo>,</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>21000</mn></mrow></mfrac><mo>]</mo></math></span>. Taking <span><math><mi>C</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>}</mo></math></span> in our main result, with the improvement of the requirement on <em>n</em> in this paper, we can extend the range of <em>k</em> from <span><math><mo>[</mo><mn>5</mn><mo>,</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>21000</mn></mrow></mfrac><mo>]</mo></math></span> to <span><math><mo>[</mo><mn>5</mn><mo>,</mo><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>12</mn></mrow></mfrac><mo>−</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><mi>n</mi><mo>]</mo></math></span>. Precisely, our main result implies that if <em>G</em> is an <em>n</em>-vertex non-bipartite graph with <span><math><mi>δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>6</mn></mrow></mfrac></math></span> and <span><math><mi>G</mi><mo>≠</mo><mi>B</mi><msub><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span>, then <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>⊂</mo><mi>G</mi></math></span> for all <span><math><mi>k</mi><mo>∈</mo><mo>[</mo><mn>5</mn><mo>,</mo><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>12</mn></mrow></mfrac><mo>−</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><mi>n</mi><mo>]</mo></math></span>. Furthermore, we give an example to illustrate the condition on <em>n</em> given here is asymptotically tight.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"349 3\",\"pages\":\"Article 114801\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25004091\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25004091","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设C是一个由若干奇环组成的族。设C2 l +1是不在C中的最短奇环,C2k+1是不在C中的最长奇环,设BC2 l +1(n)表示取Kn2(2 l +1),n2(2 l +1)的2 l +1个顶点不相交的副本,并在每个副本中选择一个顶点,使这些顶点形成一个长度为2 l +1的环所得到的图。本文证明了如果k≥794 l12, n≥4(2l +1)k+(16l +10)(2l +1)k34,且G是最小度为δ(G)>n2(2l +1)的n顶点无c图,则G是二部图。最小度的条件由BC2 +1(n)证明。进一步,我们证明了最小度为n2(2r +1)的唯一非二部C-free图是bc2r +1(n)。这改进了元鹏结果中n的条件。原鹏先前已知的对于k≥5(因此,r =1) C={C2k+1}的结果表明,如果G是一个n顶点非二部图,且δ(G)≥n6且G≠BC3(n),则对于所有k∈[5,n21000], C2k+1∧G。在我们的主要结果中取C={C2k+1},随着本文对n的要求的改进,我们可以将k的取值范围从[5,n21000]扩展到[5,(112−o(1))n]。确切地说,我们的主要结果表明,如果G是一个n顶点非二部图,且δ(G)≥n6且G≠BC3(n),则对于所有k∈[5,(112−o(1))n], C2k+1∧G。进一步,我们给出了一个例子来说明这里给出的条件n是渐近紧的。
Let be a family consisting of some odd cycles. Suppose that is the shortest odd cycle not in and is the longest odd cycle in . Let denote the graph obtained by taking vertex-disjoint copies of and selecting a vertex in each of them such that these vertices form a cycle of length . In this paper, we show that if , and G is an n-vertex -free graph with minimum degree , then G is bipartite. The condition on the minimum degree is tight evidenced by . Furthermore, we show the only non-bipartite -free graph with minimum degree is . This improves the condition of n in a result of Yuan-Peng. The previous known result of Yuan-Peng corresponding to the case for (thus ) implies that if G is an n-vertex non-bipartite graph with and , then for all . Taking in our main result, with the improvement of the requirement on n in this paper, we can extend the range of k from to . Precisely, our main result implies that if G is an n-vertex non-bipartite graph with and , then for all . Furthermore, we give an example to illustrate the condition on n given here is asymptotically tight.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.