金(III) 1,10-邻菲罗啉配合物的水解及其与氨基酸和DNA嘌呤碱基相互作用的理论研究

IF 4.2 Q2 CHEMISTRY, MULTIDISCIPLINARY
Asitbaran Barik, Paritosh Mondal
{"title":"金(III) 1,10-邻菲罗啉配合物的水解及其与氨基酸和DNA嘌呤碱基相互作用的理论研究","authors":"Asitbaran Barik,&nbsp;Paritosh Mondal","doi":"10.1016/j.rechem.2025.102723","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the hydrolysis mechanism and biomolecular interaction of gold(III) phenanthroline-based anticancer complexes, such as [Au<sup>III</sup>(1,10-phenanthroline)Cl<sub>2</sub>][PF<sub>6</sub>] (R1), [Au<sup>III</sup>(4,7-diphenyl-1,10-phenanthroline)Cl<sub>2</sub>][PF<sub>6</sub>] (R2), [Au<sup>III</sup>(5-chloro-1,10-phenanthroline)Cl<sub>2</sub>][PF<sub>6</sub>] (R3), and [Au<sup>III</sup>(5-nitro-1,10-phenanthroline)Cl<sub>2</sub>][PF<sub>6</sub>] (R4), using the density functional theory (DFT) method incorporating solvation by a conductor-like polarizable continuum model (CPCM). The detailed structural characteristics and thermodynamics for the hydrolysis of all selected gold complexes have been evaluated. Hydrolysis mechanism proceeds via two sequential steps: (i) first chloride substitution to form mono-aquated intermediates and (ii) remaining chloride substitution yielding di-aquated products. Thermodynamics and kinetic analysis suggest that the first hydrolysis step is rate-determining, with higher activation free energies (<em>∆</em>G: P1-I = 21.6 kcal/mol, P2-I = 21.3 kcal/mol, P3-I = 21.7 kcal/mol, and P4-I = 22.0 kcal/mol) compared to the second hydrolysis step (<em>∆</em>G: P1-II = 20.5 kcal/mol, P2-II = 20.1 kcal/mol, P3-II = 20.8 kcal/mol and P4-II = 21.1 kcal/mol). DFT evaluated, rate constant (<em>k</em>) values for the second hydrolysis of R1, R2, R3 and R4 are 2.32 × 10<sup>−2</sup>, 4.43× 10<sup>−2</sup>, 1.42 × 10<sup>−2</sup>, and 8.78 × 10<sup>−2</sup> s <sup>−1</sup>, respectively, indicating faster second hydrolysis of the gold complexes. The di-aquated complexes exhibits enhanced electrophilicity, enabling stronger interactions with biomolecules. Binding interaction with DNA bases (adenine and guanine) and amino acids (cysteine and selenocysteine) demonstrates preferential affinity for the N7 site of guanine and selenium in selenocysteine. Kinetic study and activation free energies indicate that these interactions are stabilized by hydrogen bonding in all stationary points i.e. RA(reactant adduct), TS(transition state), and PA(product adduct) obtained during ligand exchange processes.</div></div>","PeriodicalId":420,"journal":{"name":"Results in Chemistry","volume":"18 ","pages":"Article 102723"},"PeriodicalIF":4.2000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A theoretical investigation on the hydrolysis of gold(III) 1,10-phenanthroline complexes and their interaction with amino acids and DNA purine bases\",\"authors\":\"Asitbaran Barik,&nbsp;Paritosh Mondal\",\"doi\":\"10.1016/j.rechem.2025.102723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study explores the hydrolysis mechanism and biomolecular interaction of gold(III) phenanthroline-based anticancer complexes, such as [Au<sup>III</sup>(1,10-phenanthroline)Cl<sub>2</sub>][PF<sub>6</sub>] (R1), [Au<sup>III</sup>(4,7-diphenyl-1,10-phenanthroline)Cl<sub>2</sub>][PF<sub>6</sub>] (R2), [Au<sup>III</sup>(5-chloro-1,10-phenanthroline)Cl<sub>2</sub>][PF<sub>6</sub>] (R3), and [Au<sup>III</sup>(5-nitro-1,10-phenanthroline)Cl<sub>2</sub>][PF<sub>6</sub>] (R4), using the density functional theory (DFT) method incorporating solvation by a conductor-like polarizable continuum model (CPCM). The detailed structural characteristics and thermodynamics for the hydrolysis of all selected gold complexes have been evaluated. Hydrolysis mechanism proceeds via two sequential steps: (i) first chloride substitution to form mono-aquated intermediates and (ii) remaining chloride substitution yielding di-aquated products. Thermodynamics and kinetic analysis suggest that the first hydrolysis step is rate-determining, with higher activation free energies (<em>∆</em>G: P1-I = 21.6 kcal/mol, P2-I = 21.3 kcal/mol, P3-I = 21.7 kcal/mol, and P4-I = 22.0 kcal/mol) compared to the second hydrolysis step (<em>∆</em>G: P1-II = 20.5 kcal/mol, P2-II = 20.1 kcal/mol, P3-II = 20.8 kcal/mol and P4-II = 21.1 kcal/mol). DFT evaluated, rate constant (<em>k</em>) values for the second hydrolysis of R1, R2, R3 and R4 are 2.32 × 10<sup>−2</sup>, 4.43× 10<sup>−2</sup>, 1.42 × 10<sup>−2</sup>, and 8.78 × 10<sup>−2</sup> s <sup>−1</sup>, respectively, indicating faster second hydrolysis of the gold complexes. The di-aquated complexes exhibits enhanced electrophilicity, enabling stronger interactions with biomolecules. Binding interaction with DNA bases (adenine and guanine) and amino acids (cysteine and selenocysteine) demonstrates preferential affinity for the N7 site of guanine and selenium in selenocysteine. Kinetic study and activation free energies indicate that these interactions are stabilized by hydrogen bonding in all stationary points i.e. RA(reactant adduct), TS(transition state), and PA(product adduct) obtained during ligand exchange processes.</div></div>\",\"PeriodicalId\":420,\"journal\":{\"name\":\"Results in Chemistry\",\"volume\":\"18 \",\"pages\":\"Article 102723\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211715625007064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211715625007064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用密度泛函理论(DFT)方法,通过类导体极化连续体模型(CPCM)结合溶剂化,探讨了金(III)菲罗啉类抗癌配合物[AuIII(1,10-菲罗啉)Cl2][PF6] (R1)、[AuIII(4,7-二苯基-1,10-菲罗啉)Cl2][PF6] (R2)、[AuIII(5-氯-1,10-菲罗啉)Cl2][PF6] (R3)和[AuIII(5-硝基-1,10-菲罗啉)Cl2][PF6] (R4)的水解机理和生物分子相互作用。对所选金配合物的详细结构特征和水解热力学进行了评价。水解机制通过两个连续的步骤进行:(i)第一个氯取代形成单水的中间体;(ii)剩余的氯取代产生双水的产物。热力学和动力学分析表明,与第二水解步骤(∆G: P1-II = 20.5 kcal/mol, P2-II = 20.1 kcal/mol, P3-II = 20.8 kcal/mol, P2-I = 21.3 kcal/mol, P3-I = 21.7 kcal/mol, P4-I = 22.0 kcal/mol)相比,第一水解步骤具有较高的活化能(∆G: P1-II = 21.6 kcal/mol, P2-I = 21.3 kcal/mol, P3-I = 21.7 kcal/mol, P4-II = 21.1 kcal/mol)。经DFT计算,R1、R2、R3和R4的二次水解速率常数(k)分别为2.32 × 10−2、4.43× 10−2、1.42 × 10−2和8.78 × 10−2 s−1,表明金配合物的二次水解速度更快。双水配合物表现出增强的亲电性,使其与生物分子的相互作用更强。与DNA碱基(腺嘌呤和鸟嘌呤)和氨基酸(半胱氨酸和硒代半胱氨酸)的结合相互作用表明对硒代半胱氨酸中鸟嘌呤和硒的N7位点具有优先亲和力。动力学研究和激活自由能表明,这些相互作用在配体交换过程中得到的RA(反应物加合物)、TS(过渡态)和PA(生成物加合物)的所有固定点上都被氢键稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A theoretical investigation on the hydrolysis of gold(III) 1,10-phenanthroline complexes and their interaction with amino acids and DNA purine bases

A theoretical investigation on the hydrolysis of gold(III) 1,10-phenanthroline complexes and their interaction with amino acids and DNA purine bases
This study explores the hydrolysis mechanism and biomolecular interaction of gold(III) phenanthroline-based anticancer complexes, such as [AuIII(1,10-phenanthroline)Cl2][PF6] (R1), [AuIII(4,7-diphenyl-1,10-phenanthroline)Cl2][PF6] (R2), [AuIII(5-chloro-1,10-phenanthroline)Cl2][PF6] (R3), and [AuIII(5-nitro-1,10-phenanthroline)Cl2][PF6] (R4), using the density functional theory (DFT) method incorporating solvation by a conductor-like polarizable continuum model (CPCM). The detailed structural characteristics and thermodynamics for the hydrolysis of all selected gold complexes have been evaluated. Hydrolysis mechanism proceeds via two sequential steps: (i) first chloride substitution to form mono-aquated intermediates and (ii) remaining chloride substitution yielding di-aquated products. Thermodynamics and kinetic analysis suggest that the first hydrolysis step is rate-determining, with higher activation free energies (G: P1-I = 21.6 kcal/mol, P2-I = 21.3 kcal/mol, P3-I = 21.7 kcal/mol, and P4-I = 22.0 kcal/mol) compared to the second hydrolysis step (G: P1-II = 20.5 kcal/mol, P2-II = 20.1 kcal/mol, P3-II = 20.8 kcal/mol and P4-II = 21.1 kcal/mol). DFT evaluated, rate constant (k) values for the second hydrolysis of R1, R2, R3 and R4 are 2.32 × 10−2, 4.43× 10−2, 1.42 × 10−2, and 8.78 × 10−2 s −1, respectively, indicating faster second hydrolysis of the gold complexes. The di-aquated complexes exhibits enhanced electrophilicity, enabling stronger interactions with biomolecules. Binding interaction with DNA bases (adenine and guanine) and amino acids (cysteine and selenocysteine) demonstrates preferential affinity for the N7 site of guanine and selenium in selenocysteine. Kinetic study and activation free energies indicate that these interactions are stabilized by hydrogen bonding in all stationary points i.e. RA(reactant adduct), TS(transition state), and PA(product adduct) obtained during ligand exchange processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Chemistry
Results in Chemistry Chemistry-Chemistry (all)
CiteScore
2.70
自引率
8.70%
发文量
380
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信