Dicky J. Silitonga , Pascal Pomarède , Niyem M. Bawana , Haolian Shi , Nico F. Declercq , D.S. Citrin , Fodil Meraghni , Alexandre Locquet
{"title":"利用深度分辨太赫兹成像和深度学习对热塑性复合材料的地下冲击损伤进行自动分类","authors":"Dicky J. Silitonga , Pascal Pomarède , Niyem M. Bawana , Haolian Shi , Nico F. Declercq , D.S. Citrin , Fodil Meraghni , Alexandre Locquet","doi":"10.1016/j.compositesb.2025.113033","DOIUrl":null,"url":null,"abstract":"<div><div>Reliable detection of barely visible impact damage is critical to ensure the structural integrity of composite components in service, particularly in safety-critical applications such as pressure vessels and transportation systems. This study presents a solution for detecting such damage in woven glass fiber-reinforced thermoplastic composites using terahertz (THz) time-of-flight tomography and convolutional neural networks. THz provides non-contact, non-ionizing, high-axial-resolution imaging of subsurface and back-surface damage, addressing key limitations of surface-based inspection methods. While THz imaging alone may not always permit conclusive damage identification, we bridge this gap by training neural network classifiers on depth-resolved THz B-scan images using ground truth from co-located X-ray micro-computed tomography. Among several pretrained architectures tested via transfer learning, DenseNet-121 exhibits the highest accuracy. The model remains robust even when trained on truncated B-scans excluding surface indentation features, confirming its ability to detect structural anomalies located internally or on the back surface. This is particularly relevant for applications where back-side access is not feasible. Experimental validation is performed on impacted glass-fiber-reinforced thermoplastic coupons prepared in accordance with ASTM D7136, with damage severity quantified through force–displacement data and micro-tomographic analysis. Labeling for supervised learning conforms to acceptance criteria from industrial standards for composite pressure vessels (ASME BPVC Section X, CGA C-6.2), ensuring regulatory alignment and enabling deployment in quality control workflows. The proposed method minimizes the need for expert interpretation or secondary validation and offers direct applicability to in-service inspection and manufacturing quality control.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"309 ","pages":"Article 113033"},"PeriodicalIF":14.2000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated classification of subsurface impact damage in thermoplastic composites using depth-resolved terahertz imaging and deep learning\",\"authors\":\"Dicky J. Silitonga , Pascal Pomarède , Niyem M. Bawana , Haolian Shi , Nico F. Declercq , D.S. Citrin , Fodil Meraghni , Alexandre Locquet\",\"doi\":\"10.1016/j.compositesb.2025.113033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Reliable detection of barely visible impact damage is critical to ensure the structural integrity of composite components in service, particularly in safety-critical applications such as pressure vessels and transportation systems. This study presents a solution for detecting such damage in woven glass fiber-reinforced thermoplastic composites using terahertz (THz) time-of-flight tomography and convolutional neural networks. THz provides non-contact, non-ionizing, high-axial-resolution imaging of subsurface and back-surface damage, addressing key limitations of surface-based inspection methods. While THz imaging alone may not always permit conclusive damage identification, we bridge this gap by training neural network classifiers on depth-resolved THz B-scan images using ground truth from co-located X-ray micro-computed tomography. Among several pretrained architectures tested via transfer learning, DenseNet-121 exhibits the highest accuracy. The model remains robust even when trained on truncated B-scans excluding surface indentation features, confirming its ability to detect structural anomalies located internally or on the back surface. This is particularly relevant for applications where back-side access is not feasible. Experimental validation is performed on impacted glass-fiber-reinforced thermoplastic coupons prepared in accordance with ASTM D7136, with damage severity quantified through force–displacement data and micro-tomographic analysis. Labeling for supervised learning conforms to acceptance criteria from industrial standards for composite pressure vessels (ASME BPVC Section X, CGA C-6.2), ensuring regulatory alignment and enabling deployment in quality control workflows. The proposed method minimizes the need for expert interpretation or secondary validation and offers direct applicability to in-service inspection and manufacturing quality control.</div></div>\",\"PeriodicalId\":10660,\"journal\":{\"name\":\"Composites Part B: Engineering\",\"volume\":\"309 \",\"pages\":\"Article 113033\"},\"PeriodicalIF\":14.2000,\"publicationDate\":\"2025-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Part B: Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359836825009448\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836825009448","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Automated classification of subsurface impact damage in thermoplastic composites using depth-resolved terahertz imaging and deep learning
Reliable detection of barely visible impact damage is critical to ensure the structural integrity of composite components in service, particularly in safety-critical applications such as pressure vessels and transportation systems. This study presents a solution for detecting such damage in woven glass fiber-reinforced thermoplastic composites using terahertz (THz) time-of-flight tomography and convolutional neural networks. THz provides non-contact, non-ionizing, high-axial-resolution imaging of subsurface and back-surface damage, addressing key limitations of surface-based inspection methods. While THz imaging alone may not always permit conclusive damage identification, we bridge this gap by training neural network classifiers on depth-resolved THz B-scan images using ground truth from co-located X-ray micro-computed tomography. Among several pretrained architectures tested via transfer learning, DenseNet-121 exhibits the highest accuracy. The model remains robust even when trained on truncated B-scans excluding surface indentation features, confirming its ability to detect structural anomalies located internally or on the back surface. This is particularly relevant for applications where back-side access is not feasible. Experimental validation is performed on impacted glass-fiber-reinforced thermoplastic coupons prepared in accordance with ASTM D7136, with damage severity quantified through force–displacement data and micro-tomographic analysis. Labeling for supervised learning conforms to acceptance criteria from industrial standards for composite pressure vessels (ASME BPVC Section X, CGA C-6.2), ensuring regulatory alignment and enabling deployment in quality control workflows. The proposed method minimizes the need for expert interpretation or secondary validation and offers direct applicability to in-service inspection and manufacturing quality control.
期刊介绍:
Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development.
The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.