{"title":"基于TSV的金刚石/碳化硅陶瓷复合基板的增强垂直传热","authors":"Jiaxuan Wang, Li Gou","doi":"10.1016/j.diamond.2025.112856","DOIUrl":null,"url":null,"abstract":"<div><div>Due to the high heat flux environment in 3D package integration, diamond films were grown by microwave plasma chemical vapor deposition (MPCVD) on a 6H-SiC ceramic substrate to obtain diamond/SiC ceramic composite with high thermal conductivity. Three-layer gradient film of diamond/graphite/graphene grown in the TSV effectively improved heat transfer performance. The overall thermal conductivity of diamond/SiC ceramic composite was 348.9 W/(m·K) measured by laser flash analysis (LFA). About 14.8 % vol diamond could reach an increase of 109.4 % in thermal conductivity, while actual heat transfer performance of diamond/SiC ceramic composite with Through-Substrate Vias (TSVs) increased by 17.1 % compared to SiC ceramic substrates. So diamond/SiC ceramic composite with TSVs could be a novel ceramic package substrates to provide a new strategy and idea for package with improved heat dissipation.</div></div>","PeriodicalId":11266,"journal":{"name":"Diamond and Related Materials","volume":"159 ","pages":"Article 112856"},"PeriodicalIF":5.1000,"publicationDate":"2025-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The enhanced vertical heat transfer based on diamond/SiC ceramic composite substrates with TSV\",\"authors\":\"Jiaxuan Wang, Li Gou\",\"doi\":\"10.1016/j.diamond.2025.112856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Due to the high heat flux environment in 3D package integration, diamond films were grown by microwave plasma chemical vapor deposition (MPCVD) on a 6H-SiC ceramic substrate to obtain diamond/SiC ceramic composite with high thermal conductivity. Three-layer gradient film of diamond/graphite/graphene grown in the TSV effectively improved heat transfer performance. The overall thermal conductivity of diamond/SiC ceramic composite was 348.9 W/(m·K) measured by laser flash analysis (LFA). About 14.8 % vol diamond could reach an increase of 109.4 % in thermal conductivity, while actual heat transfer performance of diamond/SiC ceramic composite with Through-Substrate Vias (TSVs) increased by 17.1 % compared to SiC ceramic substrates. So diamond/SiC ceramic composite with TSVs could be a novel ceramic package substrates to provide a new strategy and idea for package with improved heat dissipation.</div></div>\",\"PeriodicalId\":11266,\"journal\":{\"name\":\"Diamond and Related Materials\",\"volume\":\"159 \",\"pages\":\"Article 112856\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diamond and Related Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925963525009136\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diamond and Related Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925963525009136","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
The enhanced vertical heat transfer based on diamond/SiC ceramic composite substrates with TSV
Due to the high heat flux environment in 3D package integration, diamond films were grown by microwave plasma chemical vapor deposition (MPCVD) on a 6H-SiC ceramic substrate to obtain diamond/SiC ceramic composite with high thermal conductivity. Three-layer gradient film of diamond/graphite/graphene grown in the TSV effectively improved heat transfer performance. The overall thermal conductivity of diamond/SiC ceramic composite was 348.9 W/(m·K) measured by laser flash analysis (LFA). About 14.8 % vol diamond could reach an increase of 109.4 % in thermal conductivity, while actual heat transfer performance of diamond/SiC ceramic composite with Through-Substrate Vias (TSVs) increased by 17.1 % compared to SiC ceramic substrates. So diamond/SiC ceramic composite with TSVs could be a novel ceramic package substrates to provide a new strategy and idea for package with improved heat dissipation.
期刊介绍:
DRM is a leading international journal that publishes new fundamental and applied research on all forms of diamond, the integration of diamond with other advanced materials and development of technologies exploiting diamond. The synthesis, characterization and processing of single crystal diamond, polycrystalline films, nanodiamond powders and heterostructures with other advanced materials are encouraged topics for technical and review articles. In addition to diamond, the journal publishes manuscripts on the synthesis, characterization and application of other related materials including diamond-like carbons, carbon nanotubes, graphene, and boron and carbon nitrides. Articles are sought on the chemical functionalization of diamond and related materials as well as their use in electrochemistry, energy storage and conversion, chemical and biological sensing, imaging, thermal management, photonic and quantum applications, electron emission and electronic devices.
The International Conference on Diamond and Carbon Materials has evolved into the largest and most well attended forum in the field of diamond, providing a forum to showcase the latest results in the science and technology of diamond and other carbon materials such as carbon nanotubes, graphene, and diamond-like carbon. Run annually in association with Diamond and Related Materials the conference provides junior and established researchers the opportunity to exchange the latest results ranging from fundamental physical and chemical concepts to applied research focusing on the next generation carbon-based devices.