TransStyle:用于图像反转和编辑的基于transformer的StyleGAN

IF 3.3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yingchun Guo, Xueqi Lv, Gang Yan, Shu Chen, Shi Di
{"title":"TransStyle:用于图像反转和编辑的基于transformer的StyleGAN","authors":"Yingchun Guo,&nbsp;Xueqi Lv,&nbsp;Gang Yan,&nbsp;Shu Chen,&nbsp;Shi Di","doi":"10.1016/j.patrec.2025.09.002","DOIUrl":null,"url":null,"abstract":"<div><div>Image inversion using StyleGAN retrieves latent codes by embedding real images into the GAN’s latent space, enabling attribute editing and high-quality image generation. However, existing methods often struggle with reconstruction reliability and flexible editing, resulting in low-quality outcomes. To address these issues, we propose TransStyle, a new StyleGAN inversion model based on Transformer technology. Our model features a novel encoder structure, PACP (Path Aggregation with Covariance Pooling), for improved feature representation and a feature prediction head that uses covariance pooling. Additionally, we propose a Transformer-based module to enhance interactions with semantic information in the latent space. StyleGAN then uses this enhanced latent code to generate images with high fidelity and strong editability. Experimental results demonstrate that our method achieves at least 5% higher face reconstruction similarity compared to current state-of-the-art techniques, confirming the advantages of TransStyle in image reconstruction and editing quality.</div></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"198 ","pages":"Pages 1-7"},"PeriodicalIF":3.3000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TransStyle: Transformer-based StyleGAN for image inversion and editing\",\"authors\":\"Yingchun Guo,&nbsp;Xueqi Lv,&nbsp;Gang Yan,&nbsp;Shu Chen,&nbsp;Shi Di\",\"doi\":\"10.1016/j.patrec.2025.09.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Image inversion using StyleGAN retrieves latent codes by embedding real images into the GAN’s latent space, enabling attribute editing and high-quality image generation. However, existing methods often struggle with reconstruction reliability and flexible editing, resulting in low-quality outcomes. To address these issues, we propose TransStyle, a new StyleGAN inversion model based on Transformer technology. Our model features a novel encoder structure, PACP (Path Aggregation with Covariance Pooling), for improved feature representation and a feature prediction head that uses covariance pooling. Additionally, we propose a Transformer-based module to enhance interactions with semantic information in the latent space. StyleGAN then uses this enhanced latent code to generate images with high fidelity and strong editability. Experimental results demonstrate that our method achieves at least 5% higher face reconstruction similarity compared to current state-of-the-art techniques, confirming the advantages of TransStyle in image reconstruction and editing quality.</div></div>\",\"PeriodicalId\":54638,\"journal\":{\"name\":\"Pattern Recognition Letters\",\"volume\":\"198 \",\"pages\":\"Pages 1-7\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Recognition Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167865525003125\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167865525003125","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

使用StyleGAN的图像反演通过将真实图像嵌入GAN的潜在空间来检索潜在代码,从而实现属性编辑和高质量图像生成。然而,现有的方法往往在重建可靠性和灵活编辑方面存在困难,导致结果质量低。为了解决这些问题,我们提出了一种新的基于Transformer技术的StyleGAN反演模型TransStyle。我们的模型采用了一种新的编码器结构,PACP(路径聚合与协方差池),用于改进特征表示和使用协方差池的特征预测头。此外,我们提出了一个基于transformer的模块来增强与潜在空间中语义信息的交互。StyleGAN然后使用这种增强的潜在代码来生成具有高保真度和强可编辑性的图像。实验结果表明,与目前最先进的技术相比,我们的方法实现了至少5%的人脸重建相似度,证实了TransStyle在图像重建和编辑质量方面的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TransStyle: Transformer-based StyleGAN for image inversion and editing
Image inversion using StyleGAN retrieves latent codes by embedding real images into the GAN’s latent space, enabling attribute editing and high-quality image generation. However, existing methods often struggle with reconstruction reliability and flexible editing, resulting in low-quality outcomes. To address these issues, we propose TransStyle, a new StyleGAN inversion model based on Transformer technology. Our model features a novel encoder structure, PACP (Path Aggregation with Covariance Pooling), for improved feature representation and a feature prediction head that uses covariance pooling. Additionally, we propose a Transformer-based module to enhance interactions with semantic information in the latent space. StyleGAN then uses this enhanced latent code to generate images with high fidelity and strong editability. Experimental results demonstrate that our method achieves at least 5% higher face reconstruction similarity compared to current state-of-the-art techniques, confirming the advantages of TransStyle in image reconstruction and editing quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pattern Recognition Letters
Pattern Recognition Letters 工程技术-计算机:人工智能
CiteScore
12.40
自引率
5.90%
发文量
287
审稿时长
9.1 months
期刊介绍: Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition. Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信