Wiener汞合金空间中MHD方程和带阻尼的粘弹性Navier-Stokes方程的弱解和温和解

IF 2.3 2区 数学 Q1 MATHEMATICS
Chen-Chih Lai
{"title":"Wiener汞合金空间中MHD方程和带阻尼的粘弹性Navier-Stokes方程的弱解和温和解","authors":"Chen-Chih Lai","doi":"10.1016/j.jde.2025.113777","DOIUrl":null,"url":null,"abstract":"<div><div>We study the three-dimensional incompressible magnetohydrodynamic (MHD) equations and the incompressible viscoelastic Navier–Stokes equations with damping. Building on techniques developed by Bradshaw, et al. (2024) <span><span>[1]</span></span>, we prove the existence of mild solutions in Wiener amalgam spaces that satisfy the corresponding spacetime integral bounds. In addition, we construct global-in-time local energy weak solutions in these amalgam spaces using the framework introduced by Bradshaw and Tsai (2021) <span><span>[4]</span></span>. As part of this construction, we also establish several properties of local energy solutions with <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>uloc</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> initial data, including initial and eventual regularity as well as small-large uniqueness, extending analogous results obtained for the Navier–Stokes equations by Bradshaw and Tsai (2020) <span><span>[3]</span></span>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"452 ","pages":"Article 113777"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weak and mild solutions to the MHD equations and the viscoelastic Navier–Stokes equations with damping in Wiener amalgam spaces\",\"authors\":\"Chen-Chih Lai\",\"doi\":\"10.1016/j.jde.2025.113777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study the three-dimensional incompressible magnetohydrodynamic (MHD) equations and the incompressible viscoelastic Navier–Stokes equations with damping. Building on techniques developed by Bradshaw, et al. (2024) <span><span>[1]</span></span>, we prove the existence of mild solutions in Wiener amalgam spaces that satisfy the corresponding spacetime integral bounds. In addition, we construct global-in-time local energy weak solutions in these amalgam spaces using the framework introduced by Bradshaw and Tsai (2021) <span><span>[4]</span></span>. As part of this construction, we also establish several properties of local energy solutions with <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>uloc</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> initial data, including initial and eventual regularity as well as small-large uniqueness, extending analogous results obtained for the Navier–Stokes equations by Bradshaw and Tsai (2020) <span><span>[3]</span></span>.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"452 \",\"pages\":\"Article 113777\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625008046\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625008046","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了三维不可压缩磁流体动力学方程和带阻尼的不可压缩粘弹性Navier-Stokes方程。基于Bradshaw等人(2024)开发的技术,我们证明了Wiener汞合金空间中满足相应时空积分界的温和解的存在性。此外,我们使用Bradshaw和Tsai(2021)[4]引入的框架构建了这些汞合金空间中的全局实时局部能量弱解。作为该构造的一部分,我们还建立了具有Luloc2初始数据的局部能量解的几个性质,包括初始和最终正则性以及小-大唯一性,扩展了Bradshaw和Tsai(2020)[3]对Navier-Stokes方程获得的类似结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weak and mild solutions to the MHD equations and the viscoelastic Navier–Stokes equations with damping in Wiener amalgam spaces
We study the three-dimensional incompressible magnetohydrodynamic (MHD) equations and the incompressible viscoelastic Navier–Stokes equations with damping. Building on techniques developed by Bradshaw, et al. (2024) [1], we prove the existence of mild solutions in Wiener amalgam spaces that satisfy the corresponding spacetime integral bounds. In addition, we construct global-in-time local energy weak solutions in these amalgam spaces using the framework introduced by Bradshaw and Tsai (2021) [4]. As part of this construction, we also establish several properties of local energy solutions with Luloc2 initial data, including initial and eventual regularity as well as small-large uniqueness, extending analogous results obtained for the Navier–Stokes equations by Bradshaw and Tsai (2020) [3].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信