平面Lp对偶Minkowski问题在临界情况下的正周期解

IF 2.3 2区 数学 Q1 MATHEMATICS
Zhibo Cheng , Shujing Yuan , Qigang Yuan , Jingli Ren
{"title":"平面Lp对偶Minkowski问题在临界情况下的正周期解","authors":"Zhibo Cheng ,&nbsp;Shujing Yuan ,&nbsp;Qigang Yuan ,&nbsp;Jingli Ren","doi":"10.1016/j.jde.2025.113776","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we investigate the planar <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> dual Minkowski problem<span><span><span><math><msup><mrow><mi>x</mi></mrow><mrow><mo>″</mo></mrow></msup><mo>+</mo><mi>x</mi><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></msup><msup><mrow><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>′</mo><mspace></mspace><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mfrac><mrow><mn>2</mn><mo>−</mo><mi>q</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mi>f</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>,</mo></math></span></span></span> where <em>p</em> and <em>q</em> are two constants, <span><math><mi>f</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>R</mi><mo>/</mo><mi>T</mi><mi>Z</mi><mo>;</mo><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>)</mo></math></span>, and <span><math><mi>T</mi><mo>&gt;</mo><mn>0</mn></math></span>. Notice that in the critical case <span><math><mi>T</mi><mo>=</mo><mi>π</mi></math></span>, the <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> dual Minkowski problem is closely related to the half-period symmetry problem in convex geometry. By using Krasnosel'skii-Guo fixed point theorem and Schauder's fixed point theorem, we derive sufficient conditions for the existence of positive <em>π</em>-periodic solutions to this equation. In addition, we employ numerical bifurcation analysis to explore the dynamical behavior of positive <em>π</em>-periodic solutions.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"452 ","pages":"Article 113776"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Positive periodic solutions to the planar Lp dual Minkowski problem in the critical case\",\"authors\":\"Zhibo Cheng ,&nbsp;Shujing Yuan ,&nbsp;Qigang Yuan ,&nbsp;Jingli Ren\",\"doi\":\"10.1016/j.jde.2025.113776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we investigate the planar <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> dual Minkowski problem<span><span><span><math><msup><mrow><mi>x</mi></mrow><mrow><mo>″</mo></mrow></msup><mo>+</mo><mi>x</mi><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></msup><msup><mrow><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>′</mo><mspace></mspace><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mfrac><mrow><mn>2</mn><mo>−</mo><mi>q</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mi>f</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>,</mo></math></span></span></span> where <em>p</em> and <em>q</em> are two constants, <span><math><mi>f</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>R</mi><mo>/</mo><mi>T</mi><mi>Z</mi><mo>;</mo><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>)</mo></math></span>, and <span><math><mi>T</mi><mo>&gt;</mo><mn>0</mn></math></span>. Notice that in the critical case <span><math><mi>T</mi><mo>=</mo><mi>π</mi></math></span>, the <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> dual Minkowski problem is closely related to the half-period symmetry problem in convex geometry. By using Krasnosel'skii-Guo fixed point theorem and Schauder's fixed point theorem, we derive sufficient conditions for the existence of positive <em>π</em>-periodic solutions to this equation. In addition, we employ numerical bifurcation analysis to explore the dynamical behavior of positive <em>π</em>-periodic solutions.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"452 \",\"pages\":\"Article 113776\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625008034\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625008034","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究平面Lp对偶Minkowski问题mx″+x=xp−1(x2+x ' 2)2−q2f(t),其中p和q为两个常数,f∈L1(R/TZ;R+), t >0。注意,在T=π的临界情况下,Lp对偶Minkowski问题与凸几何中的半周期对称问题密切相关。利用Krasnosel’skii- guo不动点定理和Schauder不动点定理,给出了该方程π周期正解存在的充分条件。此外,我们采用数值分岔分析探讨了正π周期解的动力学行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Positive periodic solutions to the planar Lp dual Minkowski problem in the critical case
In this paper, we investigate the planar Lp dual Minkowski problemx+x=xp1(x2+x2)2q2f(t), where p and q are two constants, fL1(R/TZ;R+), and T>0. Notice that in the critical case T=π, the Lp dual Minkowski problem is closely related to the half-period symmetry problem in convex geometry. By using Krasnosel'skii-Guo fixed point theorem and Schauder's fixed point theorem, we derive sufficient conditions for the existence of positive π-periodic solutions to this equation. In addition, we employ numerical bifurcation analysis to explore the dynamical behavior of positive π-periodic solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信