{"title":"平面Lp对偶Minkowski问题在临界情况下的正周期解","authors":"Zhibo Cheng , Shujing Yuan , Qigang Yuan , Jingli Ren","doi":"10.1016/j.jde.2025.113776","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we investigate the planar <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> dual Minkowski problem<span><span><span><math><msup><mrow><mi>x</mi></mrow><mrow><mo>″</mo></mrow></msup><mo>+</mo><mi>x</mi><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></msup><msup><mrow><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>′</mo><mspace></mspace><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mfrac><mrow><mn>2</mn><mo>−</mo><mi>q</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mi>f</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>,</mo></math></span></span></span> where <em>p</em> and <em>q</em> are two constants, <span><math><mi>f</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>R</mi><mo>/</mo><mi>T</mi><mi>Z</mi><mo>;</mo><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>)</mo></math></span>, and <span><math><mi>T</mi><mo>></mo><mn>0</mn></math></span>. Notice that in the critical case <span><math><mi>T</mi><mo>=</mo><mi>π</mi></math></span>, the <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> dual Minkowski problem is closely related to the half-period symmetry problem in convex geometry. By using Krasnosel'skii-Guo fixed point theorem and Schauder's fixed point theorem, we derive sufficient conditions for the existence of positive <em>π</em>-periodic solutions to this equation. In addition, we employ numerical bifurcation analysis to explore the dynamical behavior of positive <em>π</em>-periodic solutions.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"452 ","pages":"Article 113776"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Positive periodic solutions to the planar Lp dual Minkowski problem in the critical case\",\"authors\":\"Zhibo Cheng , Shujing Yuan , Qigang Yuan , Jingli Ren\",\"doi\":\"10.1016/j.jde.2025.113776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we investigate the planar <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> dual Minkowski problem<span><span><span><math><msup><mrow><mi>x</mi></mrow><mrow><mo>″</mo></mrow></msup><mo>+</mo><mi>x</mi><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></msup><msup><mrow><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>′</mo><mspace></mspace><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mfrac><mrow><mn>2</mn><mo>−</mo><mi>q</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mi>f</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>,</mo></math></span></span></span> where <em>p</em> and <em>q</em> are two constants, <span><math><mi>f</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>R</mi><mo>/</mo><mi>T</mi><mi>Z</mi><mo>;</mo><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>)</mo></math></span>, and <span><math><mi>T</mi><mo>></mo><mn>0</mn></math></span>. Notice that in the critical case <span><math><mi>T</mi><mo>=</mo><mi>π</mi></math></span>, the <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> dual Minkowski problem is closely related to the half-period symmetry problem in convex geometry. By using Krasnosel'skii-Guo fixed point theorem and Schauder's fixed point theorem, we derive sufficient conditions for the existence of positive <em>π</em>-periodic solutions to this equation. In addition, we employ numerical bifurcation analysis to explore the dynamical behavior of positive <em>π</em>-periodic solutions.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"452 \",\"pages\":\"Article 113776\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625008034\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625008034","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
本文研究平面Lp对偶Minkowski问题mx″+x=xp−1(x2+x ' 2)2−q2f(t),其中p和q为两个常数,f∈L1(R/TZ;R+), t >0。注意,在T=π的临界情况下,Lp对偶Minkowski问题与凸几何中的半周期对称问题密切相关。利用Krasnosel’skii- guo不动点定理和Schauder不动点定理,给出了该方程π周期正解存在的充分条件。此外,我们采用数值分岔分析探讨了正π周期解的动力学行为。
Positive periodic solutions to the planar Lp dual Minkowski problem in the critical case
In this paper, we investigate the planar dual Minkowski problem where p and q are two constants, , and . Notice that in the critical case , the dual Minkowski problem is closely related to the half-period symmetry problem in convex geometry. By using Krasnosel'skii-Guo fixed point theorem and Schauder's fixed point theorem, we derive sufficient conditions for the existence of positive π-periodic solutions to this equation. In addition, we employ numerical bifurcation analysis to explore the dynamical behavior of positive π-periodic solutions.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics