{"title":"完全非线性混合局部-非局部问题的精细边界正则性","authors":"Mitesh Modasiya, Abhrojyoti Sen","doi":"10.1016/j.jde.2025.113780","DOIUrl":null,"url":null,"abstract":"<div><div>We consider Dirichlet problems for fully nonlinear mixed local-nonlocal non-translation invariant operators. For a bounded <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> domain <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>, let <span><math><mi>u</mi><mo>∈</mo><mi>C</mi><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> be a viscosity solution of such Dirichlet problem. We obtain global Lipschitz regularity and fine boundary regularity for <em>u</em> by constructing appropriate sub and supersolutions coupled with a <em>Harnack type</em> inequality. We apply these results to obtain Hölder regularity of <em>Du</em> up to the boundary.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"452 ","pages":"Article 113780"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fine boundary regularity for fully nonlinear mixed local-nonlocal problems\",\"authors\":\"Mitesh Modasiya, Abhrojyoti Sen\",\"doi\":\"10.1016/j.jde.2025.113780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider Dirichlet problems for fully nonlinear mixed local-nonlocal non-translation invariant operators. For a bounded <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> domain <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>, let <span><math><mi>u</mi><mo>∈</mo><mi>C</mi><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> be a viscosity solution of such Dirichlet problem. We obtain global Lipschitz regularity and fine boundary regularity for <em>u</em> by constructing appropriate sub and supersolutions coupled with a <em>Harnack type</em> inequality. We apply these results to obtain Hölder regularity of <em>Du</em> up to the boundary.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"452 \",\"pages\":\"Article 113780\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625008071\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625008071","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Fine boundary regularity for fully nonlinear mixed local-nonlocal problems
We consider Dirichlet problems for fully nonlinear mixed local-nonlocal non-translation invariant operators. For a bounded domain , let be a viscosity solution of such Dirichlet problem. We obtain global Lipschitz regularity and fine boundary regularity for u by constructing appropriate sub and supersolutions coupled with a Harnack type inequality. We apply these results to obtain Hölder regularity of Du up to the boundary.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics