基于机器学习和密度泛函理论的煤粉煤灰基地聚合物对重金属固定化的新见解

IF 7.1 2区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Kaizhi Yang , Bo Yang , Kezhou Yan , Yining Su , Longyi Zhao , Jungang Tang , Yu Che , Yanxia Guo
{"title":"基于机器学习和密度泛函理论的煤粉煤灰基地聚合物对重金属固定化的新见解","authors":"Kaizhi Yang ,&nbsp;Bo Yang ,&nbsp;Kezhou Yan ,&nbsp;Yining Su ,&nbsp;Longyi Zhao ,&nbsp;Jungang Tang ,&nbsp;Yu Che ,&nbsp;Yanxia Guo","doi":"10.1016/j.wasman.2025.115139","DOIUrl":null,"url":null,"abstract":"<div><div>Coal fly ash (CFA)-based geopolymers are sustainable low-carbon binders for heavy metal immobilization, while promoting solid waste utilization and safe disposal. CFA-based geopolymers immobilization of heavy metal primarily depends on the raw material properties, curing conditions, alkali activator properties and heavy metal properties. However, conventional methods for optimizing geopolymer synthesis and evaluating immobilization capacity are costly, time-intensive, and lack of insight into solidification mechanisms. This study combined machine learning (ML) algorithm and density functional theory (DFT) to predict and reveal heavy metal immobilization of CFA-based geopolymers. Eight ML models were evaluated, with the gradient boosting regression (GB) model exhibiting the best predictive performance (R<sup>2</sup> = 0.9284, RMSE = 0.3912). Feature importance analysis reveals determinants of immobilization performance: heavy metal properties &gt; geopolymer raw material properties &gt; curing conditions &gt; alkali activator properties. DFT calculations revealed that geopolymers incorporating large-radius hydrated heavy metal ions, low Si/Al ratios, and elevated calcium content exhibit enhanced heavy metal immobilization capacity, characterized by reduced interaction energies and stronger electron localization function peaks. Overall, the integrated ML + DFT method improves predictive capabilities for complex waste systems and reveals immobilization mechanisms.</div></div>","PeriodicalId":23969,"journal":{"name":"Waste management","volume":"208 ","pages":"Article 115139"},"PeriodicalIF":7.1000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel insight into the heavy metal immobilization by coal fly ash-based geopolymers using machine learning and density functional theory\",\"authors\":\"Kaizhi Yang ,&nbsp;Bo Yang ,&nbsp;Kezhou Yan ,&nbsp;Yining Su ,&nbsp;Longyi Zhao ,&nbsp;Jungang Tang ,&nbsp;Yu Che ,&nbsp;Yanxia Guo\",\"doi\":\"10.1016/j.wasman.2025.115139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Coal fly ash (CFA)-based geopolymers are sustainable low-carbon binders for heavy metal immobilization, while promoting solid waste utilization and safe disposal. CFA-based geopolymers immobilization of heavy metal primarily depends on the raw material properties, curing conditions, alkali activator properties and heavy metal properties. However, conventional methods for optimizing geopolymer synthesis and evaluating immobilization capacity are costly, time-intensive, and lack of insight into solidification mechanisms. This study combined machine learning (ML) algorithm and density functional theory (DFT) to predict and reveal heavy metal immobilization of CFA-based geopolymers. Eight ML models were evaluated, with the gradient boosting regression (GB) model exhibiting the best predictive performance (R<sup>2</sup> = 0.9284, RMSE = 0.3912). Feature importance analysis reveals determinants of immobilization performance: heavy metal properties &gt; geopolymer raw material properties &gt; curing conditions &gt; alkali activator properties. DFT calculations revealed that geopolymers incorporating large-radius hydrated heavy metal ions, low Si/Al ratios, and elevated calcium content exhibit enhanced heavy metal immobilization capacity, characterized by reduced interaction energies and stronger electron localization function peaks. Overall, the integrated ML + DFT method improves predictive capabilities for complex waste systems and reveals immobilization mechanisms.</div></div>\",\"PeriodicalId\":23969,\"journal\":{\"name\":\"Waste management\",\"volume\":\"208 \",\"pages\":\"Article 115139\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Waste management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0956053X25005501\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956053X25005501","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

粉煤灰基地聚合物是一种可持续的低碳重金属固定化粘合剂,同时促进固体废物的利用和安全处理。cfa基地聚合物对重金属的固定化主要取决于原料性质、固化条件、碱活化剂性质和重金属性质。然而,优化地聚合物合成和评估固定能力的传统方法成本高,耗时长,并且缺乏对固化机制的了解。本研究将机器学习(ML)算法与密度泛函理论(DFT)相结合,预测并揭示了cfa基地聚合物的重金属固定化。对8种ML模型进行了评价,其中梯度增强回归(GB)模型的预测效果最好(R2 = 0.9284, RMSE = 0.3912)。特征重要性分析揭示了固定性能的决定因素:重金属性质;地聚合物原料性质;固化条件;碱活化剂性质。DFT计算表明,含有大半径水合重金属离子、低Si/Al比和高钙含量的地聚合物表现出更强的重金属固定能力,其特征是相互作用能降低,电子定位函数峰更强。总体而言,集成的ML + DFT方法提高了复杂废物系统的预测能力,并揭示了固定机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel insight into the heavy metal immobilization by coal fly ash-based geopolymers using machine learning and density functional theory
Coal fly ash (CFA)-based geopolymers are sustainable low-carbon binders for heavy metal immobilization, while promoting solid waste utilization and safe disposal. CFA-based geopolymers immobilization of heavy metal primarily depends on the raw material properties, curing conditions, alkali activator properties and heavy metal properties. However, conventional methods for optimizing geopolymer synthesis and evaluating immobilization capacity are costly, time-intensive, and lack of insight into solidification mechanisms. This study combined machine learning (ML) algorithm and density functional theory (DFT) to predict and reveal heavy metal immobilization of CFA-based geopolymers. Eight ML models were evaluated, with the gradient boosting regression (GB) model exhibiting the best predictive performance (R2 = 0.9284, RMSE = 0.3912). Feature importance analysis reveals determinants of immobilization performance: heavy metal properties > geopolymer raw material properties > curing conditions > alkali activator properties. DFT calculations revealed that geopolymers incorporating large-radius hydrated heavy metal ions, low Si/Al ratios, and elevated calcium content exhibit enhanced heavy metal immobilization capacity, characterized by reduced interaction energies and stronger electron localization function peaks. Overall, the integrated ML + DFT method improves predictive capabilities for complex waste systems and reveals immobilization mechanisms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Waste management
Waste management 环境科学-工程:环境
CiteScore
15.60
自引率
6.20%
发文量
492
审稿时长
39 days
期刊介绍: Waste Management is devoted to the presentation and discussion of information on solid wastes,it covers the entire lifecycle of solid. wastes. Scope: Addresses solid wastes in both industrialized and economically developing countries Covers various types of solid wastes, including: Municipal (e.g., residential, institutional, commercial, light industrial) Agricultural Special (e.g., C and D, healthcare, household hazardous wastes, sewage sludge)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信